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Preface

The growth of scientific knowledge has obviously spurred a massive
explosion of technology. But, the driving spirit of science is not to
change the world but to understand it.

—Kwame Appiah, quoted by Bill Cowan, University of Waterloo,
Canada

The purpose of this book is to leave a legacy.
This purpose connects to a situation in which we, the world of creative

programming, now find ourselves. Together, the purpose and the situation are
going to determine the shape of this book. I’m saying this right here, early on,
because it is rather an unusual shape, more tilted (at first) toward “creative”
than toward “programming.” So bear with me while I explain.

Recovery from monoculture
For the last two decades, I have been like a guide keeping open the trail
to Nova Scotia while the covered wagons all go thundering off to California.
Nothing about the science of computing has changed, but the way people talk
has gradually altered, year by year. Computer programs and even computing
languages are a subset of “the way people talk.” And many years of slow change
can sum up to quite a shift.

My roots go back to the seventies and earlier, to an “age of science.” People
were discovering the Van Allen Belts and bringing back rocks from the Moon.
Computing was in its infancy, although the science of numerical algorithms,
as represented by Donald Knuth, was well underway. By contrast, in 2014
we have been for many years in an “age of technology,” and computing is a
trillion-dollar industry. But positive feedback, typical of commercial success,
has led to a narrowing of technique.

Computers obey both command and nature, but command has been the fo-
cus of development since the early 1990s. Physical nature has a wide, accessible,
village-like structure of territorial entities communicating across boundaries
over time. This is deliberately hidden in the deep, centralized, legalistic com-
mand structure called “abstraction,” which thus easily appears to produce
instant, universal results at will.

The results are easy to see. Things like multiple choice, picking from a list,
filling in the blanks, doing what the user interface wants—these all go fast
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Preface

and easy. But what if the task is different? What if the data does not fit, or
you need an ellipse instead of a rectangle, or the mouse can’t do a fine enough
job? Then although it is clear that all the necessary data and capabilities are
there, ease of use becomes extreme lack of flexibility. All of a sudden, the
program stands between you and your data.

It’s important here not to be deceived by appearances. A massive increase
in quantity (not to mention flashiness) can leave the impression that “things
are busting out all over” when in fact nearly the opposite is true. It’s like the
huge increase in supply of potatoes in pre-1847 Ireland, but they were all one
kind of potato, susceptible to one rot. And since the coding problem is all one
kind of thinking—a monoculture of the mind—I needed to step back and take
thought myself about how to leave a legacy that fights it.

First, it’s clear I have to use tools that date from before the convergence.
Practically speaking, that means C, a 1970s-era language that still is supported
almost everywhere, thanks to its low-level flexibility. In addition, there are
operating system usages, like bash (in Linux/Unix/BSD) and BATCH (the
old name for scripting in DOS and Windows), that have proved remarkably
persistent. The reason is mainly that the programming of servers demands
them.

In addition, I have to use an approach that can ease the modern programmer
out of the monocultural mindset. This means going behind programming to
things and what they actually do. That is why the first few chapters of this book
will have an almost artistic feel. Only after assembling these kindergarten blocks
can I re-enter the world of programming, this time with specific instructions
on how to make it do what Wide Computing wants.

Luckily, it turns out that is a pretty good description of what my legacy
teaching is trying to save: things, and what they actually do.

What do you need to know?
Because of my artistic lead chapters, the answer to this question is: not much.
In fact, all I really ask is a scientific bent of mind. Things have consequences!
Also needed is your willingness to have patience while you work out these
consequences.

An experienced programmer or computer science student may actually need
to unlearn some things. Almost always, when a word has a modern computing
meaning and a more general naive meaning, I mean the latter. I do my best to
avoid these. For instance, I use “piece” where the more natural term would
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be “component,” which unfortunately has an object-oriented meaning quite
different from what I want to say. Still, some will sneak through.

If I succeed at my task, the complete newbie will find himself or herself
able to program more and more as the chapters advance. This is because the
thing, and what it needs to do, cause questions to arise. These, in turn, require
research and design, before a word of code is written. The program will break
into more than one piece, and data will flow between them, with data rate
requirements. Each piece is simple (even if its algorithms are not), and the data
passing between pieces is also simple. Each piece can be tested by itself, and
when all are put together, you will suddenly find you have a working device.

After all, I’m not really a programmer. I’m a mathematician, and I like to
know why things work. Since I’m a lazy mathematician, I like it to be obvious
why things work. It’s amazing how easy programming becomes when you break
it down into little things that obviously work. That includes fast, powerful,
rocket-science programs, because power and mystery are not the same thing!

Connel
The C toolset Connel goes with this book. Although Connel is not necessary
to apply this book’s techniques, it makes things easier, especially when a
modern, UI-centered operating system has to talk to hardware and embedded
code or code on other machines. Connel, which is named after “connector
link,” compiles and runs without change both on Linux and Windows, and the
resulting programs can communicate (Windows to Windows, Linux to Linux, or
Windows to Linux). Connel is also designed to communicate with “alien” code
and hardware, whether it’s a UI-based program in any language, or embedded
code running on hardware that may not have an operating system or even a
standard compiler. Connel also cooperates with virtualizers like VMWare to
allow programs on different virtual machines to talk to each other.

The beauty of Connel is that you don’t have to learn a new protocol for
each communicating application. Often, you don’t even have to recompile
the code. This is because the talking machinery of Crawl-Space Computing
behaves the same (in the state machine sense) between any communicating
pair, whether software or hardware. In fact, you don’t even need both sides
of the communicating pair: you can substitute a dummy on one side, and the
other side will run at full speed and not even know the difference. In addition,
you can “mix and match” real working modules at will, and all your data is
always completely under your control as it passes from one module to another.
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1Introduction to Wide
Computing

Abstract

The purpose of this chapter is to introduce a 2014-era computing
enthusiast to Wide Computing—the why, the how, and the theory. I will
follow an elementary, even naive, approach for two reasons. First, I want
to reach as wide an audience as possible. And second, a key feature of
Wide Computing is that it reduces abstraction to a minimum. You get
your hands on serious data and do useful projects without mastering a
six-volume API.

α—time, space, and parallel from hobbies to space science
β—get rid of hiccups
γ—hardware/software equivalence
δ—natural data and timing gatekeepers set you free
ε—flatten out the difficulty curve for complex projects
ζ—the duality of Wide versus Deep
η—tools that open doors
θ—terms that everyone can understand

1.1 Approach
The practical approach taken in this book, and in this introduction, is “ad-
vancing waves.” Each wave reaches a certain level of utility, with a number of
forward references and partially worked-out concepts. These raise a number of
questions, which lead to a discussion of theory and specifics that illuminate
the foundations of the next wave.

The usual Deep introductory approach is to offer hands-on coding (or at
least filling in the blanks) of a tiny, restricted “Hello World” program, and
then to proceed through targeted features. (Compare [9].) The Wide approach
embraces the entire world of computing from the very beginning, and focuses
in by stages on details that will allow actual programming of the project. This
will support any project, and gain control of all the data, not just what the
author or language designer discloses.

Each task under this approach therefore starts with a design stage (like
essay-writing instead of filling in the blanks), and the design is based on theory.
So my first job will be to introduce you to the theory. The beauty of this theory
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1. Introduction

is that it is simple, naive, and short—the opposite of what people now expect
of a computing paradigm! And it is capable of doing every computing task.

ITEM DEEP EMPHASIS WIDE EMPHASIS

Resource allocation

Shared
Dynamic
System-controlled
Infinite pool

Distributed
Static
Explicitly programmed
Explicitly limited

Configuration decisions Run time Load time

Initial state State of all
enclosing callers

Explicit load-time
setup parameters

Component life During call only Eternal
Typical task ordering Stack FIFO
Normal stack state Deep Empty

Information passing Calling sequence,
global variables

Process-to-process
(channel) transmission

Program control Serial Parallel
Model Compiler parse Connected hardware

Table 1.1: Contrast between paradigms

1.2 What is Wide Computing?
Wide (Crawl-Space) Computing is the technique of programming independent
pieces, and exposing, at the top level, the communication and timing connec-
tions carrying all their shared data. It contrasts with Deep (Concrete-Slab)
Computing, which exposes a single face of control and underlays this with
many hidden layers of callable program components able to perform parts of
the tasks desired. Wide is naturalistic, while Deep is legalistic.

To drill down into the implications of this, see Table 1.1. This is, except for
the column headers, identical to a table I published in a 1996 paper [3]. The
Deep trend established then has (except for a few outliers like map-reduce,
GPGPU and Go) only continued, adding one or two layers in many computing
languages, as in [9].

Every one of the rows in Table 1.1 is related to independence of the pieces
and/or exposure of the communications. For instance, deeply nested calls
(which correspond to multiple inheritances in object-oriented languages) are

2



1.3. Why?

easily done deep in a stack, but those deep stacks are not friendly to context
switches that support independent program pieces (multitasking).

To take another example, the independent pieces of Wide Computing clearly
require parallel program control. By contrast, the single face of control (typically
a graphical user interface) preferred by the Deep model imposes a single timeline
and is therefore locked into the methodology of serial programming. This is
the source of the common opinion that massively parallel programming is a
task of fantastic difficulty. That’s only true if you insist on the Deep model.
Non-programmers (like shoppers in a store) do massively parallel tasks all the
time without thinking.

The rest of Table 1.1 will become clear as we progress. Right now, there
are already questions that need to be answered.

1.3 Why?
To get started on the why of Wide Computing, I’d suggest you glance at
two references. First, look at the 2014 cutting edge of Deep in [1] (thank you,
Roger Wagner), and then look at Wide as done in 1993—[10] Figures 13 and
17. On the one hand you have extreme obscurity based on convoluted design
(callbacks), while on the other you have a design picture that anybody can
understand, with arrows meaning real data flow between real entities. Think
of them as villages with roads carrying traffic.

You can do any computing task with the Wide approach, as is rather
obvious, since both microprocessors and human society are built that way.
But after twenty years of monoculture, the computing world “speaks Deep,”
leaving the problem of getting from here to there. This book, and Connel, offer
shortcuts to make this happen. This section will introduce you to the reasons
why it’s worth the effort.

1.3.1 α—Time, space, and parallel: from hobbies to space
science

Wide computing works within time, while Deep computing is designed as if
everything were instantaneous. Because delays do exist, and are significant,
Deep computing requires callbacks. The low-level, “reused” system driver code
that hides timing and data input/output must call high-level user functions to
deal with the specifics of the program, as in Figure 1.1.

Notice that this requires passing a function as an argument to a driver
(so-called “first-class functions”), which has bad implications for security and
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1. Introduction

Figure 1.1: Deep calling structure with callback

predictable behavior. This introduces variability in the hidden drivers, which
in Object Oriented programming is called “inheritance” and “polymorphism,”
thus making a namespace-centric feature out of a design flaw. Notice also the
existence of circular paths, which can lead to resource trouble, especially since
the deeper behavior of driver code is usually obscure.

Wide computing handles the same problem in Figure 1.2. Here the context-
dependent method calls are eliminated, and replaced with independent programs
ruling distinct resources (“pieces”). Notice that the top piece subsumes both the
user method and the callback. In place of call arrows we get data-flow arrows,
allowing natural control of all the state complexity that gets scattered among
the Deep methods and drivers. Each piece can be tested separately, and all
the data flow through the arrows is accessible.

Because time is OK in Wide programming, the pieces of Figure 1.2 are
relaxed about blocking. In fact, they deliberately exploit it for control purposes,
which can easily be programmed in. And space (in the territorial sense of
ownership, rather than sharing, of resources) comes natural to independent
“workers” tasked with parts of a project. Finally, the entire structure of Figure 1.2
is obviously parallel, in contrast to the Deep structure, which is straining to
preserve the metaphor of nested calls on a single CPU.

There it is, in a nutshell. From hobbies to space science should be
obvious now. Think of any project of that sort, and it breaks down, and breaks
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1.3. Why?

Figure 1.2: Wide structure of independent pieces

down naturally, into a more extensive version of Figure 1.2. In fact, Wide pieces
improve on code reuse. They allow whole device reuse, independent of version
and operating system, and complete control of data flowing between program
parts.

The only question remaining is: can you do this kind of stuff—with modern
tools? And the answer is: you are forced to do it, because time and resource-
space dominate every project. You can follow the dictates of “advanced” tools
and agonize through every step, struggling upstream against the tools’ Deep
bias. Or you can deliberately impose Wide structure from the beginning of the
project, selecting tools that fit the design. Making this possible is the purpose
of Connel, and of this book.

1.3.2 β— Get rid of hiccups

Building software to race as fast as possible through a problem leads to hiccups,
or glitches in the flow, because irregular input and natural variation cause
batches to come ready all at once, with time gaps in between. The Deep
paradigm refuses to deal realistically with time, and therefore it keeps falling
into this trap. It’s built into Deep DNA, so to speak. Remember the early
computer games that were ruined when X86 CPUs increased their clock speed?

Only Crawl-Space Computing can assure no hiccups, because only Crawl-
Space Computing puts the data flow plumbing on the outside. Once all the
data flow (video, music, robot actuator feedback) is there where you can pass
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Figure 1.3: Hardware/software equivalent communication

it through your traffic meter, you can design exquisitely smooth production.
I’ll detail the solution later in the book.

One point needs to be made. Some people complain that the data passing
overhead of the Wide model kills the efficiency of the program, causing Figure 1.2
to limp along behind Figure 1.1 forever. This is rarely so, and any random-
intensive database case that suffers from such a Deep requirement can be
enclosed in one box in Figure 1.2 (a so-called harness) and the rest of the
world can treat it as a source. For everything else, communication overhead
can be made minor, because immense hardware and protocol effort has gone
into making that so.

The best is the enemy of the good. If you insist on the highest altitude,
you have one possible point and no room for maneuver. My rule of thumb is
that one to five percent can be yielded to Wide overhead, as this is vanishingly
small compared to Moore’s Law variations.

1.3.3 γ—Hardware/software equivalence

The mighty Communicating Sequential Processes (CSP) model (see [8]), as
expressed in occam ([6]) and the Transputer, leads to hardware/software
equivalence. This means equivalence of multitasking (lots of programs running
under the OS) and multiprocessing (lots of embedded thingies helping you
out), and interchangeability within these classes. In the book, I develop this
even further with “move”-type operations such as the swap caddy, the flip
driver, and the slider slot, described in the Second Wave chapter.

Figure 1.3 shows a simple case of hardware/software equivalence, an un-
conditional point-to-point communication. The direction is unimportant; what
matters is that piece1 came ready before piece2. The hardware version could
be on two separate processors connected by wires; the software version could
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1.3. Why?

Figure 1.4: Harness with data rerouting

be multitasked on a uniprocessor. The machinery of data transmission could
tie up both, one, or even neither (DMA) of the processes’ CPU cycles. The
state-machine behavior is not implementation-dependent, though speed is.

All the other occam-like constructs used in Wide programming, such as
parallels and alternations (select()), show similar hardware/software equiv-
alence. Connel is also designed this way. The power of this is immense, as it
yields also hardware/hardware equivalence and software/software equivalence,
allowing easy mix and match operations with Wide pieces, often without even
a recompile.

1.3.4 δ—Natural data and timing gatekeepers set you free

Modern apps and mystery programs (the kind found on the “cloud”) cause
discouragement, because the programmer or artist feels trapped in the labyrinth
hiding his data. But every program has to output at some point. This is where
Wide designs can gain control. You draw a line around the big, tangled thing,
and start to extract what you need.

What I call gatekeepers are the focus of Connel. They live in very general
programming spaces (Linux and Windows) and are meant to operate in tandem
with undigested hunks like UIs and UI-based programs. Each program has a
way of packaging and outputting data, whether a “save” or an export, and each
OS has ways of transmitting this from program to program, even if scripts and
canned UI sequences have to be used. GUIs even offer ways, like Automator in
the Mac, to script their UI sequences, though this capability is little known
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1. Introduction

(thank you, Tom Dickson).
Drawing a line around the standard “app” in this way, and causing controlled

data flow in both directions across this line, is called a harness. Once the
data has passed coherently under control of your Wide pieces, which live
outside the harness on the right-hand side of Figure 1.4, and are connected
with connector links (connels), you can shout out “FREE AT LAST!” and
begin to really create.

Here I define a (lowercase) connel to be a practical, explicitly named or
addressed device for carrying data in blocking FIFO fashion from one piece to
another. It can be either hardware or software.

The two OS Windows of Figure 1.4 can be windows in one OS, or whole
virtual machines, or connected physical machines. Because the gatekeepers
(like select() among sockets or serial channels) are responsive, you do not
have to restrict yourself to batch runs. You can display it, you can watch it
flow, you can do science on it, you can do subtle modifications and then pass
it back to the app.

The image of villages connected by roads is the complete picture of your
project. The reason I created Connel, and the way it works best, is to make
the app or UI be just one village and give freedom to make several other
villages, all totally according to your specs, and responsive to whatever kind of
independent software or embedded hardware you want to connect up. It turns
out that the important data can always be reduced to a simple form, it flows
fast down the “roads,” and you can watch all of this flow and time it precisely.

1.3.5 ε—Flatten out the difficulty curve for complex projects

Everyone has heard of major disasters in software projects, the latest at this
writing being the $500,000,000 “Obamacare rollout” in 2013. Less well known
is the relative fruitfulness of computing development in the Space Age of
the 1960s and early 1970s, with fewer engineers and far poorer equipment.
Figure 1.5 is the result of some research I did for DARPA in 2007, showing that
development viscosity, defined as amount of effort per unit of improvement,
has conservatively increased 60 times (not 60%) since 1966.

The reason is the factorial (worse than exponential) difficulty of Deep
development, where everything has to relate to all of past history, taken in any
order. Typically, user-level developers throw up their hands at understanding
the consequences of all the hidden code invoked by their modules. If the target
project is anything but incremental, this leads to “Obamacare disasters.” You
will notice this almost always, when an important customer utility installs
major new software.
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Viscosity Index Graph
(Sources: see [11])
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Figure 1.5: Massive increase in development viscosity

The Wide, communicating village model flattens this difficulty curve to
linear. To convince yourself of this, use Obamacare as an example. Just devise
a data flow description of the health care signup, analogous to Figure 1.2. From
subscribers to insurance companies, it’s not much more complex than Figure 1.2,
and its physical bigness is soluble by repetitive construction methods.

With harnesses and completely described data flow, many developers (past
and present) can work together and not bog down in each other’s complexity.
Every piece can continually be tested independently of all others, creating a
comfort level that extends across every nested depth of the design. Standard-
ize/send/particularize is a trivial overhead compared to this boon.

As unplanned new requirements pour in, the project adjusts without a
complexity explosion. (An analogy that shows this is the expansion of pioneering
settlement networks in the 1800s.) All particularizations, such as changing
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Figure 1.6: Duality

apps, OS versions, and data formats, are quarantined within their harnesses,
at worst resulting in packet protocol additions, easily coordinated between two
sides of a harness edge. So the easy development leads to trivial maintenance
(my DBA name is “Lost Art of Zero Maintenance”).

1.3.6 ζ—The duality of Wide versus Deep

My claim of a duality is a huge claim, because it implies that the Deep
monoculture has neglected half the “development territory.” Figure 1.6 is
realistic!

Close examination of Table 1.1 gives details of the duality. Both in nesting
development and spreading applications, each Deep approach has a dual Wide
approach. See [7], in which the original Object-Oriented terminology, which is
nowadays fully Deep and namespace-centric in its applications, refers in 1993
to the Wide entities implied naively by its nomenclature. (Minor namespace
changes in established Deep languages, hiding tools like C malloc, hijacked
the Object-Oriented approach in the early 1990s.)

Perhaps the most unintuitive example of this duality is call/return, typically
a Deep action involving pushing and popping a stack. It’s a surprise to most
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people that there is a Wide dual, fully implemented in Transputer occam,
which uses no stack but places the call information in a process workspace,
and does a jump/jump-back. (A Transputer has a three-word stack used only
for interrupts.) This allows calls to work well in parallel constructs, and can
be set up on any processor with a workspace pointer, like the X86 register DS.

Graphical user interfaces display the duality very strongly. The user experi-
ence of a GUI is completely Wide: the mouse pointer is moved to a territory
to grant focus or make a selection or an input. The territorialism is 3D, with
windows lying under other windows. However, standard GUI programming
“maps” this Wide experience onto a unified Deep block of code, in which the
visible territories do not have an independent existence but are implemented
by an event-based Deep call and callback structure.

This Deep abstraction of the GUI can have highly anti-intuitive results if
not programmed very carefully (where “very carefully” means “in a way that
fits the territorial intuition”). Thus, GUIs are one case where moving to the
Wide side of the duality could create a great simplification and increase of
robustness at a stroke. Because it’s human speed, the overhead caused by extra
communications would be insignificant.

1.3.7 η—Tools that open doors

An infuriating experience that is growing ever more common (thank you, Tero
Kukola, for making me aware of this) is the tool that acts as a gated community,
where you do not control the gate. You have “access” (or refusal of access)
taking the place of ownership. You find yourself being moved to the “cloud”
where your work is stored mysteriously and dished up only by a program to
which you must pay subscription fees. Instead of being located clearly in a file
system under your control, it is accessible vaguely by a search.

This is an extension of the click-on-file system, developed much earlier,
where a file (your created object) is associated one-to-one with a program that,
by implication, is always used on that file. From a scientific point of view, that
is absurd. Your data should lie open to you to use in ways limited only by your
imagination. It should be so clear that you can organize work on it by hand.

The Crawl-Space or connected village model of Wide computing is clearly
sympathetic with this ideal, while the convoluted Deep model, with its impor-
tant hidden details, is prone to access limitations. Two “orthogonal” features
supported here encourage massively accessible data. One is pseudocoding, in
which an occam-like dialect is used to define precisely the state machine be-
havior of the program. I use occam because, line for line, it is much richer
than C in state machine capability, being designed to support Communicating
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Sequential Process (CSP) program structure. The other is packet protocols,
which actually define the data as it is passed, allowing complete assurance that
the information suffices for the project requirements.

In the book, I go into detail about pseudocoding, but leave the packet
protocols (which are well known in standard computing) up to you. In addition, I
offer some detail about standard tools, such as the make process of compiling, and
the text files behind an Integrated Development Environment. By proceeding
in this direction, you, the developer, can be freed from dependency on any
specific tool.

1.3.8 θ—Terms that everyone can understand

Wide Computing is friendly to a naive approach because its behavior displays
a strong analogy to connected physical devices. The book bolsters this by
insisting on the hardware/software equivalence in its extensions of occam, even
if the hardware analogy is rather impractical. The reason for this is that the
hardware analogy forms an anchor, imposing behavior limitations that prevent
many forms of “going nuts” that are typical of Deep (legalistic) computing
algorithms. It also prevents invalid metaphor, a source of deep-seated bugs
that is in the DNA of most standard computing. For a detailed discussion of
this, see my white paper [4].

Being a mathematician, I have a personal preference for the terminology of
mathematics and physical science. I also have a hard time following abstract
Computer Science of the sort found in [1]. The entire book is designed for
a non-Computer Science major. Anyone who can hack code to do a science
project ought to be able to follow my presentation.

I admit that there are places in the book where the mathematics and
physics get pretty detailed. These are illustrations of the applications of Wide
Computing, not essential to the understanding of Wide Computing itself.
Similarly, there are lots of code snippets in the book (and a few complete
breakdowns) but these are for reference. You can blow past them in a first
reading, and go back when you are actually building code.

1.4 Drill down

1.4.1 Wide Computing is general and practical

The ability to do any computing task with Wide techniques follows from an
even stronger claim: “You can do anything with Transputers in occam.” The
Transputer was a 1980s-era embedded chip designed to be programmed in
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Wide fashion by its native computing language, occam. On the scale of Wide
to Deep, occam is more extremely Wide than Connel or the techniques I will
be teaching here. Nonetheless, correcting for the hardware capabilities of its
era, Transputer-based solutions showed themselves capable of doing everything.
Perhaps the most extreme example is in [5]: an autonomous vehicle travelling
the German autobahn in 1993, guided by Transputers programmed in occam.

Though the Transputer is gone, occam still exists. It will be the foundation
of the pseudocoding technique taught later in this book.

Some questions now arise.
If modern languages are too Deeply layered, and occam is only to be used

for pseudocode, how are we to code our Wide programs?
This is a difficulty I have dealt with for years, and the solution, though not

entirely satisfactory, is to use the least abstract language univerally available:
C. Consulting Table 1.1 shows that C is already Deep (for instance in its use of
a stack), but it is minimal and close to the bare metal. Communication using
C libraries is completely general, not restricted to designed-in features as in
many more recent languages. Hiddenness can be avoided, as discussed later,
by not using malloc or C++ constructs.

Having settled on C, it turns out that the standard operating systems Linux
and Windows can be adapted to Wide programming. This is because they have
been forced to be server-friendly (even Windows had to restore its command-
line BATCH-like capabilities because of this). Embedded programming is
naturally Wide and, even if the tools available are more rudimentary, can be
made to join the model, as long as they are programmed in C so that their
communication features can be placed outermost.

What I avoid, or at least must work around, are object-oriented languages
and their enforced hiding, as in this code snippet on page 4 of [9]:

void draw() {
w.step();
w.display();

}

This is in Processing, a language developed from Java. I asked William Swanson
what he thought w.display() does, and he replied, “Magic.”

What about code reuse, and economizing programmers’ time?
To train C and these operating systems to do Wide Computing, I developed

Connel. Used in a strict pattern, clearly modelled on occam, Connel forces the
C program to behave in a reliable and understandable Wide fashion. Not only
is this code highly reusable, but it relates to a clear data flow model. Knowledge
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of difficult C and OS-based communication behaviors is encoded in the Connel
routines and does not have to be rehashed each time the programmer needs it.

The C code generated by Connel and other Wide Programming techniques
is verbose. I do not have the resources to develop a scripting language, though
C macros could be used to vastly reduce the number of lines of code. The
resulting code blocks, which are completely standard C (not C++) and do
not use malloc, must force the programming to do Wide tasks which are
“stepchildren” of the stacky design of C.

The programmer’s time spent on this, however, is minimal. This is because
big blocks of code can be lifted from older programs, starting with the sample
programs in the Connel distribution. For those who do not have a fold editor,
cut and paste works fine. The upshot is a template program in which all the
communication “pudding” is already working at full speed and can be tested,
even before the algorithmic “plums” are inserted.

Why spend time on communication links when we could be writing real
performing code?

There are three answers, and they get to the heart of the technique.
First, in any project, it’s a good idea to do the hard part first. Commu-

nications are tricky, with complex state machines full of exceptions. A “path
through the minefield” should be found. Doing “plum” code first, making
assumptions about the comms, and later finding them wrong, can create a real
tangle.

Second, the outer connector links can be accessed later without rewriting
the program. This is useful for testing, for spying data flows, and for adding
new features.

Third, the timing and dependencies of the algorithmic code are usually
known before it is written. This means that a template “pudding-only” program
can be made quite realistic (using timers and busy loops) and be available to
help with construction of other pieces, at the same time as the algorithmic
code is being written.

1.4.2 Theory and Critiques

The contrast between Wide and Deep models of computing is the contrast
between naturalism and legalism. This makes it clear that both models are
universally valid for all programs. Legalism proposes that every action of the
machine should be exactly in accord with its programming, and this (short of
physical disasters) is always true. Naturalism proposes that every piece of the
machine behaves according to the physical laws of its construction, and this
also is always true. It is therefore always a matter of emphasis.
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The legalistic, Deep model says that the state of the program (data and
code) carries within it, as a logical consequence, the output of the program.
Thus, if Sum produces the sum of two positive integers, and LargestPrime
produces the biggest prime number less than or equal to a positive integer,
then
result1 = Sum(384290, 1289721)
and
result2 = LargestPrime(43982576)
each fit this model. Creating the computational machinery to find the answer
may not be so trivial (especially in the second case), but it is in principle
doable. This is the viewpoint of functional programming.

Two problems arise.
(D1) First, what about computing time? The functional programming

model ignores it, but it matters in the real world.
(D2) Second, what if not all the state is present at the time the task is

triggered? Then delays and communication calls (like “read(x, y)”) will have
to be sneaked in to achieve success.

The naturalistic, Wide model says that any machine consists of pieces, each
of which is itself a machine, which has an initial state, a final state, and ways
of affecting the machines or results around it. This is the viewpoint of occam,
of hardware design, and of engineering outside the computing world (as of
bridges and classic cars).

From the standard software designer’s point of view, a choice of two diffi-
culties arises.

(W1) If the machine is programmed in a standard algorithmic fashion,
especially with dynamic resources, it is hard or impossible to disentangle the
smaller machines and their effects on each other.

(W2) On the other hand, if Wide techniques are used to isolate the smaller
machines except for specific, known communications and timing effects, it
seems that a crippling restriction is imposed on the options available to the
programmer.

There is one weak point in each criticism—one path through which the
model’s advocates can break through.

(D1) is weak under conditions of Moore’s Law, with rapidly increasing raw
computing speed. Succeeding advances in chip speed have permitted Deep
Computing to sweep all before it until very recently. Lately, the complexity
explosion implied by (D2) has begun to take its toll.

(W2) is weak under conditions of cheap computing resources. GPGPU and
map-reduce are already demonstrating this on the fringes, and non-uniform
memory access (NUMA) is pressing it into center stage, but it is still viewed
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more as a problem than an opportunity. In fact, it is very much an opportunity,
because of a second-order effect I have not discussed yet.

In Deep computing, by the very fact that all programming options of the
major machine are left open, any part of the program can affect any part of the
machine, no matter how distant its functionality. (This is a trait of legalism:
some weird codicil can make the Alternative Minimum Tax apply to a low-wage
worker, so everyone needs to check everything all the time.) This means that
programming effort and complexity increase as a function of what every other
programmer has done everywhere else through all of history. Also, internally,
as a program’s size increases, its difficulty increases nonlinearly because of the
entanglements.

In Wide computing, on the other hand, every piece is self-contained and
unaffected by history. The difficulty of expanding a program is linear. This
is an effect that shows itself very early, even in programs maintained by only
one person. All that is needed is to figure out how to apportion the work
among the independent pieces, using planned communication paths, without
significantly affecting total efficiency. And great leeway is offered by modern
hardware, which now cheaply offers more and more cores that can work side
by side, instead of attempting to increase clock speed.

1.4.3 Knowledge, hiding, and predictability

Before going on, I must issue a warning to readers who are not quite so naive
in the terminology of Computer Science (CS). Many common terms are in use
in CS, especially in object-oriented programming (OOP), in a way that means
almost the opposite of their naive meaning. Understanding this is critical to
critiquing and understanding Wide Programming.

I use the word “piece” because both “object” and “component”, which seem
that they should mean the same, have become tainted in this way. They refer
more to namespace entities than to physical things or analogues thereof. In
particular, their “methods” are designed to hide the “plumbing” through which
data and timing are transmitted. Consider the line

w.display();

in the Processing example I quoted from [9].
Inheritance and polymorphism increase this hiding effect. The result is ease

of programming, but only up to a point. This point is reached when lack of
knowledge takes its toll. Code workarounds and branches are then necessary,
but increase the problem for later rounds of coding.
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Figure 1.7: HEART3 1MB Palmtop DOS demo

The design in Wide Computing is done the opposite way. Stuff happens
within a piece, but it is deliberately set up so that all significant effects that
cross the boundary of the piece, both in time and “space,” are known and
explicitly enumerated. (Notice that this is how all engineering is done outside
the computing world.)

An important consequence of this is hardware/software equivalence: It does
not matter whether a piece is implemented as a separate piece of hardware
(multiprocessing), or as a Wide-designed program or process sharing code and
timing within a single piece of hardware (multitasking), as long as the resources
are sufficient. The significant effects are the same. Therefore these options
are interchangeable. As [6] says (page 71): “Configuration [meaning how the
processes are mapped onto hardware] does not affect the logical behavior of a
program.”

This huge claim—whose consequences you can well imagine in the world of
massive multicore, GPGPU, and Google-scaled map-reduce—was illustrated
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by my 1993–1996 work of [3], in which DOS, which is a single-tasking OS
with only one megabyte of memory, was tricked into multitasking on the HP
Palmtop. Figure 1.7 shows a tiny example (it was extended to up to 128
simultaneous “screens”, either multitasked or multiprocessed). The switch
between multitasking and multiprocessing is achieved without recompiling.

Because all the significant effects going into or out of a piece are programmed
on the outside, each piece can be tested separately, and connected pieces can
be spied upon as they interact. More important, knowledge about what the
piece does is always preserved, no matter how many generations of software
development follow. And a piece’s behavior is not silently altered by some
internal call whose definition is changed by a later version of library or OS.
Wide Computing restricts itself to stable, low-level tools.

It remains, then, to answer objection (W2) in more detail. First I will sketch
some basics.

1.4.4 Data flow basics

The consequence of dealing with objection (D2) is the concept of data flow.
This obviously points to an analogy with fluid flow, but we need to justify this.

A resource, such as memory, may have a necessary role in causing a com-
puting machine to put out the correct result. Here we are concerned with a
resource that is writable in the context of the program. This implies that at
one time (before being written to) it may have a different state from later
(after being written to).

If this change of state involves progress in setting up for a correct program
output or behavior, then clearly in some sense the “after” state must be better
than that “before.” Data flow happens when the resource changes from an
indifferent state (either undefined or useless) before to a specific and useful
state after. If it’s a byte of eight bits, then any of them can be either 0 or 1
before, and we don’t care. A full-byte write puts each of them into a specific
state (either 0 or 1, but decided correctly).

Typically (but not always) this state is a copy of the state of a similar byte
somewhere else. Then it is said that data has flowed from the source byte to
the destination byte. Notice that in the case of a “copy,” the analogy with a
flow is not exact, because afterward the data still exists in the source byte.

It is possible to have a “move,” in which the source byte degenerates to an
undefined or useless state. This could be modeled as a turntable with a byte on
each side turning 180 degrees. More commonly, it may happen that the source
memory is not used further with that value after its data has moved on, and
waits to receive more data from yet another source before being useful again.
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This would then be part of a “pipeline.” But in general we cannot necessarily
assume this, and the term “data flow” permits one-to-many copies and refers
specifically to the advancing state of the receiver.

A critical part of data flow is its timing. Use of the data may not start until
after it has flowed in. (Failure to assure this is a common source of program
bugs.) In fact, transmission of a timing event alone is a form of data flow. It
changes one bit of information, causing “After event?” to change from FALSE
to TRUE. Even though no bit of memory may contain “After event?”, this
change is capable of affecting program flow, as by an interrupt. Therefore the
term “data flow” is synonymous with “timing and data flow.”

A final point is the pipeline model of data flow. In fact, in all the ordinary
output/input combinations (voltage on a wire or wires, transmission through
wave action, writes to memory) the datum input rubber-stamps the datum
output, and the time received is substantially the same or at least in time order
of sending. This substantiates the usual model of ordered pipeline flow.

The modelling of programs as collections of single sequences of actions
which can emit or receive data or timing signals to or from other such sequences
was pioneered by C.A.R. Hoare in Communicating Sequential Processes, or
CSP. The computing language occam was modeled on CSP, and the Transputer
embedded processor was built to run occam.

However, occam IO is synchronized and unbuffered (with one exception:
the first byte sent through a wire link). Due to the difficulties of coding
explicit FIFOs everywhere, most standard data channels are ordered and
buffered. A number of outputs may be standing in a queue, not yet input by
the receiver. Because Connel is designed for practical use, we go with “ordered
and buffered” even in our “almost-occam” pseudocode. It is always possible to
create the synchronized and unbuffered design if necessary by using an explicit
acknowledge (ACK) message going in the opposite direction to the main one.

1.4.5 Algorithmic basics

The great challenge to the Wide Computing model in (W2) is algorithmic
efficiency. By deliberately limiting the ability to influence other pieces of the
general program, the Wide programmer has reduced his options in performing
the task. This includes not only branches and writes to the alien pieces, but
even reading information from an alien piece, if that information is either
subject to change (race condition), or is too far away (NUMA). Therefore
special program or hardware elements called communication channels come to
the fore, and are used to move data from one piece to another.

Thus the two main efficiency challenges to Wide Computing are:
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(C1) Is the burden of data transmissions (called “communications over-
head”) required by the Wide algorithm so great that the system is bogged
down by it?

(C2) Even apart from communications overhead, is the restriction enforced
on the design of the algorithm itself so that its work can be done in several
independent processes (called “cost of parallelization”) so great that it ruins
performance?

The answer, of course, is, “It depends.” The goal of the Wide Programmer
is to find as many tasks as possible for which these challenges can be met. And
the surprising thing is how many of them there are. The fact is that raw size
makes problems more parallelizable, often by the crudest methods, even when
by nature they are very entangled (like a compiler parse).

I will explore three dualities in the world of algorithms. They are related but
not identical. Then I will give a simple example, that shows how parallelizability
can creep in where not expected.

First duality: top-down versus bottom-up. This is usually a duality of
design. In top-down design, the large-scale problem pre-exists the small-scale
components used to solve it, and usually determines their character. In bottom-
up design, the small-scale components are a “given” and by connecting them
(or a subset of them), the large-scale solution is found.

Second duality: intensive versus extensive. This actually refers to physical
units, but I’m using the terms more naively to refer to those problems where
the interconnections are relatively very numerous compared to the amount of
data (intensive), as opposed to those with few or no non-local interconnections
between massive data (extensive). An example of the first might be a deep
expression evaluation:

x = (((x1+x2)*(x3+x4))+((x5+x6)*(x7+x8)))/((x9-x10)*(x11-x12))

An example of the second might be a multiply-accumulate:

w = (y1*z1)+(y2*z2)+(y3*z3)+(y4*z4)+(y5*z5)+(y6*z6)

Frequently, intensive expressions hide what must be an extensive imple-
mentation. An example is the recursive definition of factorial:

unsigned integer fac(unsigned integer n) {
return (n > 0) ? n*fac(n-1) : 1;

}

Unwinding the evaluation of this formula reveals that an array or stack of
n “black boxes” is needed. A bottom-up approach is more economical:
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unsigned integer fac(unsigned integer n) {
unsigned integer k = 1;
unsigned integer i;
for (i=1; i<=n; i++) k *= i;
return k;

}

The third duality is deep versus wide, as defined above. An intensive problem
could be analyzed by top-down methods and performed by deep techniques,
with a single “outer face” and “black boxes” which, each in their turn, are
resolved into deeper problems with black boxes until finally they have real
data that can be evaluated. (This is how compilation is typically done.) An
extensive problem with a repeating bottom structure can do those evaluations
first and then combine them. (This will work for the multiply-accumulate or
dot product.) Thus intensive problems tend to be recursive, stacky and deep,
and extensive problems array-oriented and wide.

However, an array-oriented extensive problem may have an order imposed
on its resolution, in which case a wide approach may be harder to find. An
example of this is standard long division. Even in these cases, when a large
number of similar calculations are required, vector (pipeline) programming
makes Wide computing usable.

1.4.6 Algorithm example

I will now fully analyze one apparently simple problem, showing how subtle
these issues can be. It is addition of two unsigned binary integers.

cin 0 0 0 0 1 1 1 1
a 0 0 1 1 0 0 1 1
b 0 1 0 1 0 1 0 1

-- -- -- -- -- -- -- --
sum 00 01 01 10 01 10 10 11

The above table shows the complete single-bit results, including a carry-in.
The left bit of the sum is a carry out, the right bit the modulo sum. Two N -bit
numbers can be added, giving an N -bit modulo sum and one carry out bit,
by feeding the carry out of sum K into the carry-in of sum K + 1. This is an
extensive algorithm, the “ripple carry,” but due to the order of dependency it
takes time N .

Now we carry out a top-down analysis. If a and b are N -bit integers, and
c is 0 or 1, then we define
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s(a,b,c) = a+b+c = c(s(a,b,c))|m(s(a,b,c))

where c is 1 bit and m is N bits. Here | does not refer to “or” but is a join
between left bits and right bits in a binary number, so that

1b|0100b|1001b = 101001001b

for example.
If N = 2M , a = aL|aR, and b = bL|bR, then the carry out of the aR+bR

sum is the carry-in of the aL+bL sum. Hence we get

s(a,b,c) = s(aL,bL,c(s(aR,bR,c)))|m(s(aR,bR,c))

Hence if we have the four incoming values (with their carries out) of
s(aL,bL,0), s(aL,bL,1), s(aR,bR,0), and s(aR,bR,1), we can construct
s(a,b,0) and s(a,b,1) by selecting one of the left sums based on the right
carry, and then throwing away the right carry.

In fact, since c(s(aR,bR,0)) ≤ c(s(aR,bR,1)), we can copy s(aL,bL,0)
over s(aL,bL,1) if c(s(aR,bR,1)) == 0, and we can copy s(aL,bL,1) over
s(aL,bL,0) if c(s(aR,bR,0)) == 1. In the rare case where the two right
carries disagree (which only happens if aR and bR are bitwise complements),
we need do nothing.

Carrying this logic all the way down to the single bit adds, we discover that
with enough parallel adders, we can finish our addition in log(N) + 1 steps
instead of N steps. Here log(N) is, as usual in CS, the log base 2 rounded up
to an integer. This “conditional sum adder” is as good as the best adders in
use in actual hardware, such as the Kogge-Stone adder.

For those who are conversant with the problems of transistor-level chip
design, I may add that with one extra step, every carry bit can be made to agree
with the carry out of s(a,b,c) for the two maintained sums. This eliminates
fan-out problems and breaks the data at each reduce step into independent
sets of eight bits, two of which are neither read nor written.

This adder is a trivial example of the “map-reduce” approach to parallelizing
problems. This, where applicable, reduces a problem of size and time N to a
problem of parallel size N and time log(N)+1. The “map” part is the bunch of
parallel operations (time 1) and the “reduce” part is the joining of the results
(time log(N)). For example, a problem of size 256 is done in time 9. Most really
large problems are either outright local and hence completely parallelizable,
or susceptible to map-reduce, which by being a little wasteful in transistors
(cheap) is able to save immense amounts of time (very valuable).
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1.4.7 The Connel crawl-space strategy

I will conclude this chapter by returning to questions of practicality.
The purpose of this exercise in Wide Computing is to put scientific com-

puting power, equivalent to the actual ability of the hardware that is so cheap
nowadays, into the hands of ordinary “hackers.” In particular, it should be
possible to open the gates to a yard as big as you want—working from the
problem that you want to solve, and not from the capabilities of available UIs,
“apps” or languages.

So I don’t care if I waste a few cycles, or generate a few extra lines of code
(though I do not want to waste the programmer’s time). And I am not anxious
to keep everything up to the purest occam-level CSP standard. All I want is
that it should work, and it should be obvious why and how it works, and all
the working bits and pieces should be easily and clearly accessible.

Connel doesn’t do threads, but it does select(). Connel stays coarse-grained,
adapted to C machines and operating systems, and remains in the realm of
full processes. If shared memory is needed, it’s kept under control of terse
negotiating commands sent over the standard, explicit communication channels.
You don’t get responsiveness by using fine-grained threads, you get it by using
select()—a fact that seems to be forgotten even by hardware designers these
days (e.g. Arduino).

The CSP people discovered decades ago that there is no substitute for
select() (called ALT in occam) when you have a single process that needs to
respond to several asynchronous communicating partners. Without it, you can
spawn fine-grained threads until the cows come home, and you will still get
hesitation. The coarse processes spend a moment starting, but then respond
just as fast. They are understandable, and there are not many of them. And
all the OS tools help you keep track of them, and Connel spies can watch the
data.

Connel select also supports timer expiration. The newest development of it
is capable of supporting graphics events, either in Windows or in Linux (XCB).

Connel deals with OS-accessible, named data channels. We have key-
board and screen, serial ports (including virtual ones via Bluetooth, USB
and VMWare), Windows named pipes, and Linux sockets. We could do more,
but that seems to be enough to get universal connectivity, both within an OS
and between systems, including embedded.

Reconfiguration involving data channels of the same type does not require
recompilation. Reconfiguration that changes the type of channel (say from
socket to serial) usually requires only minor, methodical changes on the outside
of the code, in the “pudding.” This is all that is needed for changes from
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multitasking to separate hardware assist, or from OS-based components to
embedded ones—a prime use of Connel in a successful commercial software
project.

This strategy puts all the difficulty of communication hookups firmly on
the outside and at the start of development. Take lots and lots of detailed
notes! Make HOWTO files, and keep adding to them! Then you will come
back months later and boot up all the pieces of your complex system in proper
order, and it will work, and you will know why.

Multiple terminals and scripts are your friends. This is the easiest way to
develop code either in Windows or Linux. Again, take lots of notes, and avoid
the trap I have fallen into—which is to rely too much on history files. This is
especially seductive in VMWare virtual machines, which suspend and therefore
never shut down.

Using redirected spies and dummies permits you to send and receive data at
full speed. Accurate timing reads—which can be arranged at microsecond accu-
racy using RDTSC—can be used to detect even the smallest hesitations. Simple
command-line programs can do fast post-mortem analysis of the redirected
output and spy data.

Design sketches (First Wave) and pseudocoding (Second Wave) are critical
to any project. The Wide Computing approach is front-loaded with enough
design to make sure of the power to finish the job. Each piece gets its sketch,
and is a live thing that pulls in input and pumps out output with a certain
rhythm during its lifetime. You are never caught short because you add enough
CPU and communication to make sure of staying ahead of the demands of the
task.

Wide Computing offers a number of rather obvious top-down techniques for
project design. There is simple worker parallelization for completely distributed
tasks, like CDMA channels or the well-known prime searches. There are partly
distributed map-reduce calculations, as in the above example, and pipeline
calculations. In the latter case the workload may break down into large chunks,
with an alternating communication and computation “breathing” structure that
produces batches of output at a varying delay. See [10] and related references.
Finally, and most obviously of all, there is the breakdown of a project into
parts of different kinds, which are then handled by different pieces with needed
data passing between them, as in Figure 1.2.

All of the above are used as needed until each piece is clear enough so
that a bottom-up analysis of the piece estimates its computational needs,
communication bandwidth, and delays. Then it’s all combined and a total
estimate made. This works over the whole lifetime of a project.

Long-lived projects find themselves using the last technique (parts of dif-
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ferent kinds passing or shunting data flows) more and more as features are
added. An example would be a movie editor with inventive feature addition.
Dummies (that pass data and do nothing) are your friend during such add-
on developments. These include insertion of new hardware that passes data
much faster than needed without changing program behavior until their added
capacity is used.

The key thing about Wide Computing is that there is no point at which
increasing complexity locks up the project. Each updated replacement piece,
even if of completely different design and date, is slipped in to perform according
to the same specifications as the old, like a new alternator replacing an old
alternator in a classic car. Then a new capability can be spliced in without
disturbing the old. It’s like a village expanding into a city, and yet “Chicken
Street” remains.
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2First Wave: Design The
Major Pieces

Abstract

The purpose of this chapter is to describe the First Wave of Wide
design, which consists of wrestling with the problem from a Data Flow
point of view until it is clear that we have a path leading to a successful
solution. I will illustrate with two real-life examples: the timed display
of an array of temperature and humidity sensors in an orchard (thank
you, Roger Wagner), and the CDMA decoding of signals from 120 weakly
transmitting satellites (thank you, Rob Fryer). Each of these will suggest
further needs which will be worked on in later Waves.

2.1 First Wave technique
The First Wave does not yet involve coding or even pseudocoding, though it
may involve the study of existing code and pseudocode. It is focused instead
on issues of intense practicality. You do not exit the First Wave until you are
confident that the tools you have settled on are sufficient to solve the problems
presented by the project.

This requires primitivism: data flows, timing, and cycle counting. But it
also involves drawing pictures and diagrams that help make clear what the
demands of the problem are. The standard technique of counting up the time
required by the central calculation and multiplying it by the data rate is, as
experienced programmers know, not good enough. Issues such as delays, data
rate irregularity, and dependencies have to be faced clearly.

In a problem of any complexity, you will not escape without dealing with
priorities. Calculation has to take place, but data needs to get in to be calcu-
lated upon, and the results have to get out. These operations create resource
contention, and the tools and chips to be used have to be measured up against
their needs. Otherwise as simple an operation as serial input could trip you
up, especially in embedded work. As a rule, the first step in prioritizing is to
place essential communication at a high priority, calculation at a lower.

The key to success is breaking up the problem into simpler parts. These
are Wide Computing pieces, not dependent calls or methods. A piece stands
alone and is equivalent to a piece of hardware. It starts, inputs data and timing
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2. First Wave

according to a certain rhythm, outputs data and stimuli with a certain rhythm,
and ends. The methodology of getting from input data to output data can be
left vague, as long as the dependencies and effort required can be conservatively
estimated.

This means that First Wave work involves doing a lot of searching of
existing technology, whether hardware or software. It is the only way that
“dependencies and effort required can be conservatively estimated.” Sometimes
the search reveals bad news, and pushes you “back to the drawing board” to
find another path to goal. All of this is happening before you type a single line
of code or even pseudocode.

The breakdown into parts is not restricted to big, app-level pieces. Small,
humble things like FIFOs and communicators get First Wave attention too. It’s
a temptation to cry out, “Well of course I will get the data in there somehow!
The bandwidth is not that great!” When tempted to think this way, recall how
you feel when one of these “trivial” communicators refuses to work in software
that you have to use.

Because of this, the First Wave returns to that most characteristic of Wide
Computing features: the communication channel on the outside. So before
we plunge in, I am going through a few details about the behavior of this
communication in the real world dealt with by Connel, and by embedded
programming.

2.2 Basic communication
As mentioned in the Introduction, the best model of communication to start
with is ordered pipeline flow. This is a sequence in time of output/input data-
copying events, from one piece (program or hardware) to one other. All the
data goes in one direction and arrives in the same order as it left. In the case
where there is a First-In First-Out (FIFO) buffer, it may arrive later than
it left, perhaps much later. Typically data arrives in characters (8-bit bytes).
Object-Oriented languages reach for this by “serializing” data, but in Wide
Computing it is natural.

For bidirectional communication, one simply postulates two of these pipe-
lines flowing in opposite directions. They may or may not be related, as message
and ACK, for instance. Questions of ordering and synchrony dominate. One
pipeline may have extra characters left over to input; then the ACK will not
work properly. And of course communication parameters must match (baud
rate in real serial transmissions, for example).
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2.2. Basic communication

The surprising thing is that this obvious list summarizes the main difficul-
ties with point-to-point communication: (a) the existence of the pipeline at all;
(b) communication parameters; and (c) pipeline contents, which usually means
emptiness as an initial state. These difficulties tend to cluster at the beginning,
when connection is being established. Once past them, properly programmed
communication goes smoothly, unless the channel itself is unreliable. Many
hardware-based protocols, such as TCP/IP and Bluetooth, fight such unrelia-
bility with hidden retries, trying to abide by the model of a buffered pipeline
of ordered characters.

The foundational model of a unidirectional pipeline—an occam “channel” if
we ignore the buffering—is very strong for most purposes. It does not directly
cover the need to broadcast data (one to many) or to merge data streams (many
to one) though these can be done, perhaps inefficiently, using helper programs.
It also does not deal with shared memory, but that is not a big problem. Using
the liberal extension of occam in Wide pseudocode, two programs sharing
memory can negotiate its use with short messages sent in the standard pipeline
fashion.

Outputting to, and inputting from, a pipeline can be modeled on the
“write()” and “read()” calls found in most standard languages, including C.
One pushes into a pipeline, the other pulls out. A loop can easily be imagined
that does a broadcast, or a one-to-many:

int fdin, fdout[4];
unsigned char b;
int i;
/* setup code here, such as file descriptor opens */
while (read(fdin, &b, 1)) {

for (i=0; i<4; i++) {
write(fdout[i], &b, 1);

}
}

This is extremely inefficient one byte at a time, but analogous more ef-
ficient broadcasts can be devised, especially if there is parallelism (such as
multithreading). A better expression will be given when we do pseudocode,
but meantime drawings like Figure 2.1 can make the data spread clear.
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Figure 2.1: Broadcast spreader

2.3 The alternation, also known as select() or
WaitForMultipleObjects()

The many-to-one is more difficult. It requires a basic capability that cannot
be composed out of the standard read() and write() even if there are many
threads: the alternation or ALT construct, which is implemented by select()
in Unix-related systems and by WaitForMultipleObjects() in Windows. This
irreducible construct allows the sequential program to respond immediately to
the first of two or more unpredictable asynchronous stimuli.

At this point it is best to anticipate pseudocode, which handles it more
clearly than select() or WaitForMultipleObjects() loops. The general purport
(using Python-like indentation) should be clear.

WHILE notdone
ALT

a ? adata
-- perform action involving adata

b ? bdata
-- perform action involving bdata

Here x ? xdata refers to a read of xdata on channel x. The way this will
actually be executed is something like this:
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WAIT
a ? adata
-- perform action involving adata
b ? bdata
-- perform action involving bdata
b ? bdata
-- perform action involving bdata
WAIT
b ? bdata
-- perform action involving bdata
a ? adata
-- perform action involving adata
b ? bdata
-- perform action involving bdata
WAIT
b ? bdata
-- perform action involving bdata
WAIT
a ? adata
-- perform action involving adata
...

The two independent channel inputs are racing, and can come in in any
order, with or without waits. If new input data comes ready while “perform
action” is still running, the following ALT immediately chooses an input, while
if not, a wait takes place at that ALT.

The inputs may be a timer expiration or an event, as well as data. The
program responding to the stimuli is purely sequential. No polling is used,
but the response is as timely as possible. This is the right way to program
processes that have multiple asynchronous inputs or stimuli, and eliminates
much uncomfortable multithreaded code, leaving the design far simpler.

First Wave design can simply have multiple data arrows coming in, and
a single action block dealing properly with whatever data has come in, in
whatever order. Frequently, very little code is included in the “perform action”
blocks inside the ALT, perhaps only a few state settings, and most of the action
is done afterwards, as in the following pseudocode:
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WHILE notdone
SEQ

ALT
a ? adata

-- perform action involving adata
b ? bdata

-- perform action involving bdata
-- perform action involving either adata or bdata or both

In occam, code sequences are represented by a special symbol SEQ, because
an equally valid way of composing code—in parallel or PAR,—is also possible.
Please also note that the channels (a and b) always have to pre-exist their
use, and unlike adata and bdata have to be declared outside the WHILE loop,
because they are shared with a parallel program, not shown. This is why occam
totally fits the model of Wide Computing.

This ALT-based code is the heart of Connel and of Wide Computing. It
makes code extremely responsive to multiple stimuli, eliminates most of the
need for low-level multithreading and shared variables, and leaves the core of
most projects in a set of simply structured pieces, often purely sequential.

2.4 Some kinds of communication channels and
events

Connel has implemented a set of communication channels in Linux andWindows
that, by experience, are enough to accomplish most purposes. It can be expanded
at need, or Wide Computing programmers can write their own native code,
guided by Connel source.

2.4.1 The keyboard and the text console screen

This simplest of all IO for text-based programs is carefully implemented in
Connel. For maximum responsiveness, Connel offers character IO rather than
line IO.

The true tty consoles, rather than the redirected sort, are used in both
Windows and Linux. This is because redirection is a blunt, incomplete tool,
incapable of important needs like multiple inputs. Also redirection hides the
communicating channel, which according to Wide Computing theory should
be explicitly defined. For both these reasons, Connel usage prefers OS-internal
program connections to use SOCKLOCAL declarations, which are named pipes
in Windows and sockets in Linux.
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2.4.2 The serial connection

Connel offers buffered serial connections, leaving it to the operating system to
implement these. Therefore, they are in fact implemented not only by serial
cables, but also by Bluetooth, by USB, and by VM-to-VM serial connections in
VMWare. They are always expected to pre-exist the program on both sides of
the communication. Serial connections are bidirectional (have two pipelines, one
moving in each direction) whether or not their implementation is full-duplex
or half-duplex.

Once the serial connection exists and the communication parameters like
baud rate are agreed upon, buffering is expected, so programs may need to be
able to drain leftovers from the channel. Following that, the channel operates
in character mode, though buffering means that actual tranmissions are usually
much more efficient than that. Serial IO is most useful between different
machines, including embedded boards, which are typically programmed “by
hand” to be able to handle buffered serial IO.

2.4.3 The SOCKLOCAL connection

The current version of Connel does communication internal to an OS on a
machine via SOCKLOCAL, which means named pipes in Windows and sockets
in Linux. Each is restricted to bidirectional communication between a server
and a client, one client at a time. Activity is started by the server, which may
open or create a SOCKLOCAL entity in the file system. From time to time a
client connects, communicates, and disconnects. This operation is also called
“connect” from the server’s side, though traditionally “accept” is the term used.

Connel has thus far avoided the server’s spawning multiple client connec-
tions, because it violates the static (outer) nature of the Wide connector links.
A SOCKLOCAL has one name and can be picked up and relinquished by
various communicating partners in sequence. This is versatile enough for oper-
ations that are not excessively dynamic, including most scientific and robotics
applications. The reason is that multiple serving channels can be created, each
handling one client at need.

A server that creates a SOCKLOCAL is a slight violation of the Wide design,
permitted because of convenience. The server runs first, and its initialization,
when it is creating the SOCKLOCALs, is treated as “outside” the effective
program run, as in this pseudocode:
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SEQ
--initiate server -- \
CHAN SOCKLOCAL thesock : -- \ This is server code
PAR -- > that creates a

WHILE serving -- / SOCKLOCAL then uses it
-- do server IO with thesock -- /

SEQ
client1(thesock) -- \ These are sequentially
client2(thesock) -- > connecting and
... -- / disconnecting clients

2.4.4 Timer

The timer is not a communication channel but an event. It is extremely useful,
especially in select() loops, where it provides a timeout branch when needed. It
must be programmed with great care, because its misuse can cause near-misses
and other hard-to-reproduce bugs.

Connel timers always use microseconds. The real-time clocks of most non-
embedded systems are much coarser than this, so a timeout happens after, not
at, the specified time.

2.4.5 Graphics

Graphics primitives are treated as communication events. In Windows we have
the standard Msg events (detected by MsgWaitForMultipleObjects, counted
and all peeked), while in Linux XCB is placed over X, and an XCB file descriptor
triggers select() responses which are then read.

It is expected that most Connel programs will not include graphics, but
will when necessary communicate with a special graphics handler that will
be explicitly and separately programmed. This prevents the code tangle that
results from centralizing all control in a Graphical User Interface (GUI).

2.4.6 Interrupts

Interrupts are events, and the collection of all active Interrupt Service Routines
(ISRs) can be understood as a big ALT loop running at highest priority. Wide
Computing principle applied to these can be used in the construction of
embedded code, but Connel does not as yet implement interrupt responses,
except for those that are available to the select() loop.

The pseudocoding techniques are extremely useful, even as is, for the design
of completely reliable embedded code.
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2.5 Example: orchard sensors (thank you, Roger
Wagner)

This is the first of my examples, which are presented with a bias toward
simplicity, and use existing capabilities. For instance, I am unmoved by the
possibility that Bluetooth 4 may someday support mesh topologies. This is
hidden, and the Wide approach prefers existing and understandable (and
therefore design-robust) parts.

A small orchard lies just outside of view of the homestead, on hilly terrain.
There is a water system, but it gets plugged now and again, and the temperatures
need watching on colder days. On hills and vales, sensors poke six inches into
the ground to keep track of dampness near the fine root system, and shaded
thermometers watch for extremes. Twenty sensors may be enough, and data
once an hour is more than sufficient.

The mission control station will be like a combined display of security
monitors, not action-packed, but we need data for at least 24 hours. A glance
will then show trouble spots before the trees can be damaged. We certainly
have no wish to string long wires, and Bluetooth in some variations has enough
range.

2.5.1 (A) Sketch the basic design

One graphics slave program plots the slowly moving data, as fed to it by a
master data capturer running on the main computer. This is also capable of
minor calculations and can detect and send some alerts. The data from all 20
sensors is sent hourly via Bluetooth to the data capturer.

In each sensor system, an embedded chip reads temperature and dampness
(and possibly other variables such as battery charge) and transmits them hourly
via Bluetooth to the master at mission control. This is a battery-powered low-
power system, with the battery either replaced periodically or recharged by a
solar panel. It therefore is as crude a chip as possible, and spends much time
in sleep mode.

2.5.2 (B) Critique the basic design

A good start is to focus on Bluetooth, since it’s the critical connection between a
reasonably-priced main system with a good screen, which is standard equipment
these days, and a reasonably priced embedded design using a low-power CPU
and a standard development tool like Arduino or Energia.
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1 3 6 12
MC________SS________SS________SS
\_____.. \_____.. \________SS

\_____..

Table 2.1: Fan-out of depth 3 sensor system with connectivity 3

This embedded design, with Bluetooth included, can already be found in
existing products like the Kickstarter sensor Flutter (see [1]). But Flutter
appears designed for single sensor use, and is veering toward complexity and
high power usage, so it will probably only serve as a guide. We need to do
some basic Bluetooth design.

There is no problem with the data throughput, but we are assuming a
connectivity of 20 will be available to the master at mission control. This
is rather demanding and must be checked. References [2] through [6] are
obtained from the search “bluetooth serial maximum number of connections”
and quickly supply the bad news: The number of connections may vary from 1
to 7 according to the spec, and for low-energy Bluetooth, the maximum is just
3. It’s hardware, so multitasking in the control center will not help. Thus, it is
back to the drawing board.

2.5.3 (C) Redo the design, correcting the communication

The thing favoring us here is the extremely low bandwidth: twenty bytes per
sensor per hour, maybe. So there is no trouble with placing the sensors in
sequence around the hour. Perhaps one could close and reopen a Bluetooth
connection to each sensor in turn. That’s not very robust (if one hangs, it could
stall the whole system, like a string of Christmas lights). For the purpose of
this exercise, I’ll demonstrate a solution that generalizes from a Wide point of
view and uses fixed links. Even a connectivity of 3 is good enough for a fan.

As shown in Table 2.1, even with connectivity only three a depth of three is
good enough to connect 21 sensor stations to mission control. How this might
work for actual placement in an orchard is shown by Figure 2.2.

Since each Bluetooth device has a worldwide unique identifier, it is possible
with this setup to preprogram each device (MC and every SS) with the identifiers
of its three (or fewer) communication partners. MC has three slaves; each of
the 12 depth-3 SSs in Table 2.1 has one master; all the others (3 depth-1 and
6 depth-2) have one master and two slaves. This design is clearly extensible to
further depths for bigger orchards.
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Figure 2.2: Orchard sensor connectivity

For First Wave purposes, we will assume that the problem of programming
these connections and triggering their startup has been solved. (Bluetooth
notes exist in the Connel package distribution.) An even more interesting
programming problem, which will be put off until further Waves, is how to
install a replacement part at any depth, and get communication partners to
work with it. This is obviously doable. The key to usefulness will be to devise
a way to do it easily.

The design in Table 2.1 clearly implies that each Bluetooth transmission
will move only one depth level. Commands move to a greater depth, and data
moves to a lesser depth. Thus, a communication between master control and a
depth-n sensor station requires n Bluetooth transmissions.

The question arises how many of these will be happening at the same time.
In many fanout applications we would try to get this kind of parallel use as high
as possible, using point-to-point hardware. In this case, it will be a good idea to
force them into being sequential or nearly so, for two reasons: (1) The point-to-
point design conceals a major shared resource, the local broadcast transmission
area, which Bluetooth deals with in a hidden fashion using message filtering.
So as not to overburden this capability with potential interference, we want
to keep the simultaneous transmissions as few as possible. (2) The problem
has an undemanding data rate, so spacing out the transmissions has little cost.
We just have to design a way to synchronize the timings.

Figure 2.3 shows the result of these considerations. If a depth n sensor
receives data from K sensors of depth n+ 1, it must pass on all the data it
receives, plus one block of data from its own sensors. If nmax = the maximum
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Figure 2.3: Orchard transmission timing38



2.5. Example: orchard sensors (thank you, Roger Wagner)

depth (here 3), and m = nmax − n, then

datasent(0) = datasize
datasent(m) = K ∗ datasent(m− 1) + datasize if m > 0 (2.1)

It is easily confirmed that this is equivalent to

datasent(m) = datasize ∗ (Km+1 − 1)/(K − 1) (2.2)

In our case K = 2, so we get

datasent(m) = datasize ∗ (2m+1 − 1). (2.3)

If we ignore the time required to send commands as small compared with
returning data, then we need only add a setup time (meaning everything except
data transmission: wakeup, command, data uptake, calculation). This needs to
be added only to the maximum-depth sensor times, since other sensors will
have even more time before they have to return data, and therefore should have
plenty of time for setup. If td = td(0) = the data transmission time allocated
to a maximum-depth sensor, and ts = the setup time for such a sensor, then
for constant data rate datasize/td we get

time(0) = ts + td

td(m) = td ∗ (2m+1 − 1) (2.4)
time(m) = 2 ∗ time(m− 1) + td(m) if m > 0.

This forces the data returns not to overlap. An analysis similar to the above
gives

time(m) = ts ∗ 2m + td ∗ (m ∗ 2m+1 + 1) (2.5)

It follows that for the case of Figure 2.3,

timeCycle = 3 ∗ time(2) = 12 ∗ ts + 51 ∗ td (2.6)

If we arbitrarily assign 45 seconds to ts and 1 minute to td, which should
be more than enough, we get the timing arrangement of Figure 2.3.

By assigning an in-time wakeup for each SS based on this cycle, leaving
a little leeway for timer drift that may happen over one hour, we can assure
that each SS is awake to hear its command, and yet allow it to sleep most of
the time.
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2.5.4 (D) Protocol, display and output

Before leaving the topic, it is a good idea to begin sketching the data protocols.
This is not as urgent a task as the communications and the hardware, because
protocols can be expanded at will without disturbing the ones that are already
functioning.

Central, of course, are the “in operation” protocols:
(D1) Command to take data
This one fans out as it moves deeper, so that one command to a Depth 1

node spreads out into 1 + 2 + 4 = 7 actual data uptakes before it is done.
(D2) Data return
This one includes a note as to its source along with the values. In the case

described in Figure 2.3, of course, time order would identify source, but this
will not always be true, and explicit identification usually takes relatively little
space and forms a cross-check. Timing order will also lead to problems if one
of the sensors cuts out.

Also basic, but less frequently used, are setup and error messages:
(D3) Revise address
A replaced sensor station will have a new Bluetooth address, and its master

needs to be notified of this. Also, if not at maximum depth, it needs to be told
of its slaves’ addresses. An active slave will advertise and be contacted by its
master.

(D4) Error
Any sensor station misbehavior ought to be reported if possible, and not

just because its data is missing from its master’s transmission.
Once mission control has anyone’s data it needs to display it:
(D5) Update
This is passed from mission control to graphics slave and causes a change

in the display.
(D6) Alert
This is passed out into the external world, if desired, and may be in the

form of an alert email or activate other alarm systems.

2.6 Example: satellite CDMA receiver (thank you,
Rob Fryer)

Though supercomputers stand ready to analyze the output of Zac Manchester’s
Kicksats, several backers would like to have the capability of doing this on
their own, with hardware that a HAM radio operator can put together. As
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with the orchard example, Wide techniques allow such a system to be designed
with complete understanding of each step and open, top-level access to the
data flow between them.

The Kicksat satellite project will probably launch around the time this
book comes out. It will release a CubeSat from the International Space Station,
and this CubeSat (about 1 foot cubed in size) will adjust its orbit and then
eject a number (about 120) of tiny Kicksats which are capable of doing simple
measurements and radio communication with Earth. Each Kicksat is about
the size of a soda cracker, with two five-inch ears of thin wire.

Every Kicksat will transmit in the same 437.24 MHz band, and they will
at least initially be in a cloud near each other, so that raises the question how
the signals of individual Kicksats will be distinguished. The answer is CDMA,
in particular a 640-bit version of the Sidelnikov, Lempel, Cohn, Eastman
(SLCE) variant on the Gold-codes scheme. See [7] and [8]. Since it allows 320
distinguishable channels, and each satellite will use only two (for a zero bit
and for a one bit), this is good enough.

It is decreed on the revised Link Budget and other public documentation of
the Kicksat that the data will be encoded in MSK at 64 kbit/second (64kb/s)
which implies the effective message rate will be a maximum of 100 bits/second.
This leaves the problem of reception and demodulation, especially the timing
of the message bits (each 640 symbol bits).

2.6.1 Basic design need

John Armstrong found some block diagrams of the ICs in the Nooelec DVB
Dongle, which feeds via USB into a Linux system running GNURadio. The
R820T does analog conversion of the radio input to get Intermediate Frequency
(IF) In-phase and Quadrature (I and Q) data sampled at 28.8 MHz. The IF
is between 1 MHz and 4 MHz. This is passed to the RTL2832U, and A to
D converted at the inadequate resolution of 8 bits to give I and Q baseband,
which must then be demodulated and CDMA filtered. A good-quality receiver,
which is the target of this First Wave design, will pick up 16 bits at the 28.8
MHz A to D point, and continue at high quality from there.

The point of this design is to qualify (or not qualify) certain CPUs and data
channels for a real-time demod device that picks up the radio transmissions
and outputs the data being sent by a particular Kicksat, or by more than one
Kicksat. This is a downward-streaming cascade, with data rates getting smaller
the farther from the raw signal, but there is a lot of calculation going on to
challenge the CPUs. Massive multiprocessing, as by the Parallella board, will
prove to be quite useful even for one satellite, as we will discover.
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A high frequency signal of the kind coming from the satellites is usually
demodulated to baseband by a two-step process involving an intermediate
frequency FI . Suppose C(t) is the carrier frequency plus data signal and C0(t)
is the pure (cosine) carrier frequency, C0(t) = cos(FC ∗ t). Then the IF signal
(II(t), QI(t)) is the low pass filtered part of C(t)∗ (cos((FC−FI)∗ t), sin((FC−
FI) ∗ t)). If this is applied to C0(t) we get (II0(t), QI0(t)) = 0.5 ∗ (cos(FI ∗
t),− sin(FI ∗ t)). To get a baseband signal we define (IB(t), QB(t)) as the low
pass filtered part of (II(t)∗II0(t)+QI(t)∗QI0(t),−II(t)∗QI0(t)+QI(t)∗II0(t)).
In the special case C(t) = cos((FC + dF ) ∗ t), we get (II(t), QI(t)) = 0.5 ∗
(cos((FI + dF ) ∗ t),− sin((FI + dF ) ∗ t)) and (IB(t), QB(t)) = 0.25 ∗ (cos(dF ∗
t),− sin(dF ∗ t)). Thus a delta frequency in the carrier+data signal corresponds
to a (negative) rotational frequency in the baseband (I,Q) vector.

The challenge starts by presuming the IF data is digitized to 16 bits by
the receiver board, and then passed to our device to get baseband data at 192
kHz. (This is well over Nyquist for the goal of 64 kHz symbol bits.) The first
piece of our device has to be capable of doing this reduction to baseband, and
handle the input and output data.

The target frequency FI of the intermediate frequency signal is typically
between 1MHz and 4MHz, according to John Armstrong. Demodulation as far
as IF is done by analog hardware, outputting the (II , QI) analog signal vector
which is rotating at a frequency around FI . This is called heterodyning and
uses a local oscillator of frequency FC − FI and its quadrature (90 degrees off
phase). Usually, as in the RTL2832U, digital computing begins at this point,
with II and QI samples at a much higher rate than FI . In the case of the
RTL2832U, as noted above, it is a 28.8MHz sampling rate. In the case of the
2-channel AD9650 (see [9]), some hardware work will give us 16 bits at 25MHz.

2.6.2 First problem

We want input at 28.8 × 4 megabytes per second, or 115.2MB/s. This is a
problem. Gigabit Ethernet is available on the Parallella board, but this is right
at the edge of its capability, and way beyond the rated capability (60 MB/s)
of USB 2.0, of which Parallella has two ports, only one for peripherals, and
Raspberry Pi (RPi) has only one.

This leaves us with two possibilities: accept analog IF input and do our
own high-speed ADC (see [9]), or accept 8-bit output from the RTL2832U.
According to the original discoverers of the RTL2832U software radio capability
(see [10]), 8 bits gives surprisingly good quality. Unfortunately, the RTL2832U
appears to depend on frequency feedback to “lock on”, which is problematic
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Figure 2.4: Hat function low-pass filter

with multiple summed signals. For the sake of this exercise, we will imagine the
AD9650 onboard and dumping 16-bit streams of I and Q into circular buffers.

Figure 2.4 shows a hat-function for averaging the outputs

IBraw = II ∗ II0 +QI ∗QI0

QBraw = QI ∗ II0 − II ∗QI0 (2.7)

from the sampled values to 192kHz values. In the case of 28.8MHz, the hat
step is exactly 150 sampling steps, while in the case of 25MHz, the hat step
is 3125/24 = 130.20833. . . sampling steps. However, even the latter case is
tractable if a discretization is used that assigns weight to a sample equal to
the area of the hat that lies over the interval that is within half a sampling
step of the sample, as shown in Figure 2.5.

The high-frequency component of (IBraw, QBraw) is between 2MHz and
8MHz, and less than 1% of it is left after filtering by this hat procedure,
according to a Fourier analysis which I will not detail here. If storage is tight,
even the 25MHz case can be programmed using 24 values of each of the
following: end multiplier, center multiplier, and ramp start multiplier. This
presumes one allows the multiplier to be incremented by (24/3125) between
steps. Then for most samples (in the 25MHz case)
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Figure 2.5: Center and end multipliers

Mi += (24.0/3125.0);
temp = Mi*IBraw[i];
IB[j+1] += temp;
IB[j] += (IBraw[i] - temp);
temp = Mi*QBraw[i];
QB[j+1] += temp;
QB[j] += (QBraw[i] - temp);

The 28.8 case is simpler. Therefore, incrementing the accumulators for
IB and QB requires (including Equations (2.7)) 6 multiplies, 6 adds, and 3
subtracts, or 15 floating point operations, for most samples. Also II and QI
must be transformed from integer to 32-bit float.

Worst case is therefore 17*28.8MFLOPS = 490MFLOPS for the high-
frequency loop. Some more calculation (such as a scaling multiply, trans-
formation from float to int, and indexing calculations) must happen at the
low frequency, 192kHz. So we are talking about 500MFLOPS to support the
transformation of I and Q to baseband.

The incoming II and QI data from the ADC will arrive at most at 2 x
2 x 28.8MB/s or about 120MB/s. Getting the baseband data off the board
will take 16 bits x 192kHz for each of IB and QB, or about 800 kilobytes per
second total.
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If we ignore the lack of an AD9650 on a Raspberry Pi, we can see whether
it could keep up. Its processor is the ARM1176JZF-S. Each floating point
operation counts as one cycle except for a multiply that is not part of a multiply-
accumulate (MAC). Such a multiply is two cycles on the ARM1176JZF-S,
according to [11]. That works out to four extra cycles, or about 620 MHz total
(actually 535 MHz if you take account that it samples at only 25MHz), and the
ARM1176JZF-S is rated at 700 MHz. The 800kB/s data transmission easily
fits within the 480 Mbits/s or 60 MB/s capabilities of USB 2.

So the Raspberry Pi is a good board for this A-to-D IF-to-baseband IQ
radio data demodulator, except for its lack of a fast dual-channel ADC and
fast analog input ports. According to [12], a TCM arrangement with DMA to
a circular buffer fed by an AD9650 should cost 1 cycle per 16-bit datum, or
60MHz to keep up with 120MB/s digitized data. That still leaves us under
700MHz.

2.6.3 Second problem

Leaving aside for the moment the problem of soldering these in, we proceed
to the 192kHz part of the design. Figure 2.6 shows the appearance of pure
MSK data from one satellite after demodulation to baseband. It corresponds to
adding or subtracting 16kHz (one-fourth the symbol frequency) from the carrier
frequency of 437.24MHz. This speeds it up or slows it down by a quarter-wave
over the time of a symbol bit. The waveforms stay continuous, and so do IB
and QB in Figure 2.6.

A major problem presents itself at this point. Even after a move to a
more accurate crystal [13], the temperature-dependent frequency error is still
+-2ppm. After generating the 437.24 MHz frequency, that is about +-900Hz.
Because many satellites are transmitting, probably with different errors, it
is not possible to “lock on” via feedback as in the RTL2832U. The error is
in Hz and its ratio to the frequency goes up as demodulation decreases the
frequency. The drift is small over a single symbol bit at 64kHz, but can amount
to thousands of degrees of phase error over a message bit that is composed of
640 symbol bits.

The CDMA technique depends on a lock on frequency, integrating the
product of the (I,Q) of a template wave, PRN0 for the zero message bit and
PRN1 for the one, with the (IB, QB) pair. This should give a sharp peak when
it matches (see [7]), but it won’t work if the received (IB, QB) pair twists
through several full circles due to error over the duration of the message bit.
If we can assume the error stays steady over time of the order of a second, a
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Figure 2.6: Part of MSK baseband waveform46
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solution presents itself: Try pre-twisting the template bit over all the possible
error values, and testing every one of these.

To keep the net absolute phase error under 36 degrees over the lifetime
of the message bit, it is necessary to space the template twists by 20Hz over
+-900Hz. This means 91 twist variations of each of PRN0 and PRN1 are needed,
or 182 tests total. Each test consists of two integrations, one in phase and one
in quadrature, resembling Equations (2.7), since the original MSK wave in
carrier frequency may have started at any time relative to phase. So there are
364 integrations to be done.

We start an integration at every step at 192kHz. This gives three integration
starts over a symbol bit, better than Nyquist, which should give a good peak
for a match between them. Each integration step is 2 multiply-accumulates,
and (192kHz)/(100Hz) = 1920 accumulations are underway at any time. Thus
364*2*1920 MACs happen at each step, with 192000 steps per second. Put
another way, there are 91 twist variations, each resulting in 4*2*1920 MACs
at each step.

This works out to 91 twist variations, each requiring 2.5 billion MACs per
second, or 182 tests, each requiring 1.25 billion MACs per second. This requires
some serious computing power. But there is a great deal of repetitiveness, so
a highly parallel design is possible. That recommends one of the massively
parallel boards now available, such as the Parallella 64.

2.6.4 Massively parallel solution

Conveniently, a test can be split into two integrations, each integration being
1.25 billion floating point operations per second, or 1.25 GFLOPS. Here a MAC
counts as two floating point operations. That fits within the 1.5 GFLOPS
capabilities of one of the 64 coprocessors in an Epiphany 64 chip, on a Parallella
64 (see [14, 15]). Six Parallellas (or one board with six Epiphany processors)
can keep up with this much, assigning 30 or 31 tests to each Epiphany, one
test to two cores. This in fact allows PRN0 and PRN1 to get three dedicated
Epiphanys each.

Each Epiphany has at least two cores left over, which if the data flow works
out can be used to scatter and gather the 30 or 31 tests. Each test detects
the quality of the match of one twist of either PRN0 or PRN1 with the data,
checking all carrier start phases at once. The scatter core is capable, if necessary,
of distributing a copy of the newly arrived IB, QB datum to the accumulators.
The gather core must receive the final result of one accumulation from each
accumulator and compare them, emitting the strongest. Each one has over
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4000 cycles to perform its job, for each “tick” of the 192kHz “data clock”, or
over 67 cycles per accumulator core, which should be adequate.

Each Parallella is receiving 32-bit floating point IB and QB each data clock,
or 1.6MB/s, for a total of under 10MB/s. If each one emits its three best
results, at 6 bytes per result, that gives a total of 22MB/s. A USB 2 should
be able to handle both at once, though a cleaner design would be to have one
USB receiving from the RPi-like demod board, and another USB sending to a
further RPi that handles final output.

The duty of that final RPi will be to receive and interpret all the quality data,
18 “winners” for each data clock, and await a real hit, a very pronounced peak.
This determines a rotation (which phase was detected by the test quadrature),
an error twist (how much phase error accumulated over the course of the
message bit), a start time (up to ticks of the data clock), and a message bit
(PRN0 or PRN1). Since the RPi at 700MHz has 202 cycles per “winner”, and an
entire message bit will involve fewer than 40000 “winners”, this discrimination
task should not be too demanding.

To do 120 satellites at once we merely have to repeat the baseband design
120 times, using 720 Epiphany chips. There will have to be repeaters on
the input, since IB and QB cannot otherwise be broadcast, but output is
independent for each of the 120 satellites.

A sketch of the design for a single satellite is shown in Figure 2.7.

2.7 Summary
With a basic understanding of communication, and simple cycle-counting of
algorithms, it becomes possible to plan very complex projects. No matter how
demanding the whole task is, the First Wave approach breaks the job up until
each piece is simple from a data flow and timing point of view. This does not
imply that the actual programming will be simple, only that its outcome is
predictable.

Communication includes one-to-one, one-to-many, and many-to-one, where
the last is the trickiest one, its true solution the little-known alternation, or se-
lect(), primitive. Connel offers several types of standard links, explicitly defined
in Windows or Linux. These allow OS-internal and OS-external data flows,
and are also capable of graphics. Related embedded programming techniques
embrace even interrupts.

The first example, orchard sensors, uses a layered (fan) approach which
has fixed, exposed connector links and can be expanded to any size project.
There are many ways in which this example can be refined: redundancy, self-
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Figure 2.7: Single satellite receiver pieces 49
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organization and self-repair, overlapping timing, and so forth. Having access at
the top level to the connectivity is key to dealing with all of these possibilities.

The second example, satellite CDMA, shows how Wide techniques respond
to big needs, including a surprise ninety-fold increase in the amount of calcu-
lation to be done. Massive multicore systems suddenly become your friend!
Wide Computing is not afraid to program these and to use all their power.
And this example copes, in the First Wave, with the little gotchas that are so
often left till last, like scattering, gathering, and total IO needs.
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than on-chip RAM. Typically 1 cycle access, although data accesses to
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and so can be remapped per-process using the MMU.
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software map TCM to? When should software replace data with the main
memory?
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trying to do. TCM is useful for (1) things that need to run very fast, (2)
things that need to run with low interrupt latency, (3) things which are
sensitive to timing issues in the main caches (cryptography for example).

Common uses of TCM include CODEC works for audio and video -
the built-in TCM DMA transfer engine means that data can be loaded
and stored while the processor is off doing other useful things. This post
has been edited by isogen74: 10 March 2009 - 10:00 AM
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Two floating point ops per cycle (800 MHz). FMADD (MAC) counts

as two operations.
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3Tools: Standard Products,
Wide Pseudocode, and
Connel

Abstract

The purpose of this chapter is to give a practical introduction to the
tools needed for Wide Computing projects. Most of the tools are standard
hardware and software, because Wide design is flexible enough for all
kinds of uses. Some of these standard tools are used in surprising ways.
Two new tools are detailed here: Wide pseudocode, a variant of the occam
language that precisely defines data flow and parallelism, and Connel, a
function library that eases Wide construction using the C language.

3.1 Principles behind the tools
In Wide programming there are many centers. This means many independent
or nearly independent devices, each of which operates in its own way. That
is tremendously liberating, and lets you go straight from each part of a First
Wave design to the best device to do that part. But it means that you have to
have a firm grasp on how each device is driven, and how they affect each other.

“How each device is driven” operates on two or three levels. When the
piece is fully programmed and in use, it is driven by the data and timing. But
it is also driven by its programming and even by its wiring, tasks undertaken
by you before any input happens. A third level applies to devices with variable
programming: the loading of the program is a special form of initial data. There
are standard tools adapted to each of these states (compiling, loading, and
running).

“How they affect each other” is in place at run time, though it can be
altered at load time (which may be something else’s run time). Putting all of
this together sounds intimidating, but in real projects it is not too bad. It’s
just one more front-loaded task (like setting up communications), which we
have just outlined in its entirety.

The key image is that of pieces that share things. What is the difference
between a “piece” and a “thing that is shared”? A piece—like a computer, a
sensor, an actuator, or a multitasked program running within one of these—is
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SEQ
--initiate server -- \
CHAN SOCKLOCAL thesock : -- \ This is server code
PAR -- > that creates a

WHILE serving -- / SOCKLOCAL then uses it
-- do server IO with thesock -- /

SEQ
client1(thesock) -- \ These are sequentially
client2(thesock) -- > connecting and
... -- / disconnecting clients

Table 3.1: Sample of occam-like pseudocode

active and “ticks over” on its own. A shared thing—serial cable, shared memory
buffer, virtual connection between virtual machines, socket, pipe, or even a
band in the electromagnetic spectrum—is passive and driven by pieces to
affect other pieces. Of course this is not a hard and fast distinction. From a
higher-level point of view, a FIFO is a shared communication pipe, but from
a lower-level point of view, it is a piece with specific programming, which we
will discuss in Chapter 4.

Having settled on this key image, which works out differently for each project,
we approach it with two sets of tools. The first set is general—compiler/linker,
loader (or burner), various testers and debuggers, and programs and design
tools that ease the work, avoiding “reinventing the wheel.” The second set is
specific to Wide Computing: pseudocoding and Connel. We will start with the
new and specific set.

3.2 Wide pseudocoding and the structure of
occam

To start the description of occam-like pseudocode, it is worth studying Table 3.1,
an example already seen in Chapter 2.

Note that occam is a real computer language, which is still supported by
several language projects, and can be compiled and used. This sample would
fail to compile at several points, as is typical with pseudocode, but it has the
correct structure. For more about the real occam language, read [2] (I’m serious;
it’s only 133 pages long, and can be downloaded as a PDF).

I’ll run down a few key points. The use of indentation to denote block
structure is very common, found in Python and in well-written C, but in occam
it is mandatory. The double dash (--) is the comment symbol, like the C++
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double slash (//). SEQ denotes code blocks that happen one after the other in
the order given, like curly brackets in C. One difference: local variables that are
in scope for the entire SEQ must be declared above the SEQ and followed
by a colon (:). In C, such variables would be declared just inside the curly
brackets, before any executable code.

3.2.1 How PAR blocks work

PAR is rather more interesting. It denotes code blocks that run in parallel. This
is actually permissive: it really means “run in any order”, including overlapped,
interleaved, or even sequentially in any sequence.

However, this is not the same as spawning in the usual OS sense. Spawning
utilizes hidden capabilities of the OS to create child processes which then have
an existence independent of the parent. This is contrary to the design of Wide
Computing or, indeed, of any form of block-structured computing, because the
multiple subsidiary (spawned) blocks have no real master, or outer, block. They
are uncontrolled once spawned, unless special care is taken to control them.

In occam, on the other hand, the PAR construct denotes subdivision of
finite resources. The number of members of a PAR is always finite and known.
The master block (the PAR itself) concludes only when every member has
concluded. This means that in all implementations of occam, an actual variable
must keep track of the number of extant PAR members, and the master PAR
block continues until that number drops to zero.

3.2.2 Channel declaration over PAR

CHAN refers to a point-to-point communicator. In occam, it is a unidirectional
communicator, and its data transmission is (almost) unbuffered, but in pseu-
docode we may be more vague about that. Table 3.1 is non-standard in several
ways, but its channel is correctly placed: above the PAR whose members it
serves, and therefore outdented at least one step before any member that uses
it.

This means two things. The channel must pre-exist the running piece that
talks through it. And at least two such pieces must exist, two at any time,
one on each end of the communication. This means a PAR is an absolute
requirement, because occam is not allowed to store a message in a channel and
come around later to pick it up.

We will adopt this as a requirement for pseudocode. Since we are allowing
buffered channels, it would in theory be possible to transmit, followed by
a receive in sequence. This, however, is pointless; why not just declare the
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message variable as a shared (i.e. handed-down) variable over the SEQ? Wide
pseudocode channels exist for the purpose of passing data between pieces that
exist side by side, and buffering, if used, is only a convenience or a property of
the real communicators.

3.2.3 The use of analogy in pseudocode

It is very easy to understand what an implementation of pure occam does in
the case of a PAR. When in doubt, read [1], another short book (161 pages).
What the instructions do is very simple, and a small combination of them takes
care of each occam primitive.

In the case of a non-prioritized PAR, Transputer occam starts the first
member and runs until it deschedules (is forced to wait on event or communica-
tion, or is timesliced out, or terminates). Then it starts the second member, and
so forth. A running count of number of members running is kept. (A member
counts as running, even if in a wait state, until it has terminated.) All members
must be started, but the first time the number of running members reaches
zero after the last member has started is the end of the PAR block execution.

There is nothing to require they interleave with each other. In fact, the
first member may terminate before the second starts, and so forth, leading to
the PAR acting as a SEQ! But each time a member deschedules, the PAR is
required promptly to set another member in motion. This leads to efficiency
in use of computing resources.

The usefulness of this in pseudocode is by the principle of analogy: the real
entities referred to by the pseudocode behave substantially the same as would
their pure occam counterparts. Here “substantially” means “in every way that
matters.” Table 3.1 gives an example of this.

The PAR has two members, as the indentation shows. The first member of
the PAR is the WHILE loop, whose contents are omitted, only alluded to by
a comment. The second member of the PAR is the SEQ, and client1, client2,
and the ellipsis “. . . ” are members of the SEQ. This is seen because the ellipsis
is indented the same as client1 and client2.

The first rack of comments (notice that comments are an essential part of
pseudocode) tells that the server consists both of the outer code leading to
the PAR, including the CHAN declaration, and the server part of the PAR. If
we consider “the server” to be its run plus the part of the OS used by its run,
we see this is true. It prepares and creates the SOCKLOCAL (causing it to
come into existence in the file system, analogous to declaring the channel) and
then it uses the channel by connecting with (traditionally called “accepting”)
communication partners in sequence.
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The inner SEQ consists of clients, together with that part of the OS that is
needed to run the clients. Clients require the channel to run, which is analogous
to “thesock” appearing as a parameter in the client calls. The clients do not
begin to operate until after the channel is declared, which corresponds to the
location of the SEQ inside the PAR. The resources of the SEQ are “all the
rest of the system” including the operator, who may be typing in commands
one by one. It does not matter if he goes out to lunch after client1 terminates,
and types in client2 afterwards. The SEQ is running in a wait state while he is
at lunch.

The counter of currently running members of the PAR is the operator, who
does not kill the server until the last client is done—otherwise it will crash.
(He should delete the channel from the file system at this point.) So this use of
SOCKLOCAL completes a clean analogy with the occam. This would not be
true if we used the Linux socket capability of spawning multiple connections
and forking copies of the program. That would be somewhat like an ellipsis
among members of the PAR, except that there is no control over the closing of
the forked copies, and the entire structure is dynamically uncontrolled. Staying
with the occam means the real programs will behave in the occam fashion—very
robustly, with no leaks or resource overflows.

The sharing of variables among members of a PAR is permitted only when
there is no possibility of races. A shared value (VAL) which is read-only can be
shared among several members. A variable which is writable may be accessed
only by one member; the others may not even read it. Wide pseudocode extends
this by requiring that at any given time any memory must be either read-only
or accessible only to one member. This permits, for example, zero-copy rotating
buffers.

3.2.4 More occam/pseudocode primitives

Several more primitives are shown in Table 3.2, an elaboration of an example
in Chapter 2.

Much of this is obvious. The code and extra ALT branch involving clock
are to make sure that at least one input is made every 50000 (time units
unspecified). If this fails to happen, the loop shuts down and the code block
ends. PLUS and AFTER (and MINUS) are rotating, modulo-2N operations
appropriate to timer outputs. The TRUE/SKIP at the end of the IF block is
due to the fact that an occam IF requires a successful test to exit (SKIP is like
C “continue”). DATA is a type undefined in occam, presumably understood in
pseudocode context.
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CHAN OF DATA a, b :
[10]DATA adata :
[10]DATA bdata :
TIMER clock :
INT aind, bind, lastime :
BOOL notdone :
SEQ
aind := 0
bind := 0
notdone := TRUE
clock ? lastime
WHILE notdone
SEQ

ALT
a ? adata[aind]

aind := aind + 1
b ? bdata[bind]

bind := bind + 1
clock ? AFTER (lastime PLUS 50000)

notdone := FALSE
clock ? lastime
IF
(aind > 9) OR (bind > 9)

SEQ
batch(adata, aind, bdata, bind)
aind := 0
bind := 0

TRUE
SKIP

Table 3.2: Sample of batching loop
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There are no definitions of variables, only of constants, in occam, and pseu-
docode follows this, because it corresponds most closely to the way embedded
code needs to behave, when the code is not reloaded every run.

Of the above, the only primitive that needs to cause you to consult [1] is
ALT. This takes place in three stages. First comes “enabling” which checks
each of the branches to see if any is ready. Each branch causes an appropriate
mark to be made in the branch’s local memory. If none is ready, “waiting”
happens and that only ends when a branch comes ready. (It is quite possible for
it never to end, although the timer branch in Table 3.2 assures an end.) After
waiting ends (or, if no waiting was needed, after enabling ends) “disabling”
happens. Each branch is checked and the first one found ready is selected.
Notice that disabling determines an order of priority.

This approach, in some variation, has to be used by all alternation capabil-
ities, like select() or WaitForMultipleObjects(). It requires more state than a
standard blocking read() or write(). It is an irreducible primitive for responsive
code.

3.2.5 A few other notes on occam notation

“flag &” placed before an ALT branch requires the Boolean “flag” to be true
before that branch can be selected. This is frequently needed in practical code
to prevent overflow or underflow.

“i FROM j FOR k” placed after SEQ, PAR, IF, or ALT defines an INT
variable i and replicates it from j through j+k-1. Unlike C, i is not declared above
the loop, nor can it be modified within the loop, nor is there any possibility of
an early exit. Use WHILE if an early exit is desired. It’s best to follow these
rules, as they prevent the knowledge about loop behavior from being scattered
around the loop.

Sub-arrays, called “abbreviations,” also use “FROM j FOR k” (without
the i), referring to the index of the array. This is extremely important for the
provable correctness of parallel operations. All arrays in occam have a defined
length. For instance,

[]INT myset IS [wholeset FROM 20 FOR 10] :

defines myset to be a 10-long subset of wholeset starting at wholeset[20].
The CASE in occam is like a C “switch” with slightly different syntax

(see [2] for details) and ELSE taking the place of “default”. The occam CASE
is a true block branch unlike the primitive computed GOTO nature of the C
switch.
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INT, INT, BOOL FUNCTION divides(INT a, INT b)
INT quot, rem :
BOOL success :
VALOF
IF

(b = 0) OR ((a = MOSTNEG) AND (b = -1))
SEQ

quot := 0
rem := 0
success := FALSE

TRUE
SEQ

quot := a/b
rem := a REM b
success := TRUE

RESULT quot, rem, success
:

Table 3.3: Essential twos-complement divide

The PROC in occam is like a void-valued function in C, but allows channels
as formal parameters and can code an entire piece of hardware. The FUNC-
TION in occam is side-effect-free and can allow multiple outputs, a convenient
improvement on C. An example is Table 3.3.

Notice that “=” in occam replaces “==” in C, and “:=” in occam replaces “=”
in C. There are other subtle differences. Mostly, occam breaks apart multiple-
result C operations like “++” and assignments which also have a value. This
makes painstaking pseudocode more prolix, but its results are more obvious,
and the real implementation of the pseudocode design may use any equivalent
construction in C or in assembly language. Thus, Table 3.3 can probably be
implemented by a single assembly divide (which also yields a remainder).

Finally, occam 2 does not have the analogue of a C struct, but we will allow
such an analogue in Wide pseudocode. In its place occam has what is called
a “variant PROTOCOL” for communications. This seems to fall between two
stools: not quite a struct (it’s for communication only), and incomplete from
the point of view of a more general protocol (it decides on content based on
one tag byte, but does not allow more complex or bidirectional state machine
definitions). Wide channel notation allows these more general options, usually
via documentation, depending on the wish of the designer. Later versions of
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occam allow structs under the name of RECORDs, and denote a member as if it
were an array subscript (the period “.” cannot be used because it is allowed
internally to an occam name, just as underscore “_” is in C).

3.3 Folding editor
A folding editor is an extremely useful tool in any form of structured program-
ming, or other organized effort (including writing this book). I use it to write
not just occam or pseudocode, but C, assembly, and even scripts. I use the
folding editor origami but there are folding capabilities or add-ons for other
editors including vim and emacs.

Some, but not all, of the usefulness of a folding editor can be provided by
cut-and-paste. But a folding editor provides block moves, even from one file
to another, with fewer complexities, and also offers the great convenience of
being able to change indentation of a whole block with few keystrokes.

The most critical thing added by a real folding editor is what I call codeface
reduction—the ability to reduce all the code you are contemplating to a page.
It operates by reducing a whole block of code to a single comment with
proper indentation. The alternative, in a program file of any size, is
microscopic font size (which is only readable by the very young), scrolling
madness, or even keyword searches.

When the code can’t be folded so that what you are contemplating takes
up a page, or a little more, it’s a sign that you are straying from good code
organization. Of course the editor provides you with tools to “drill down” into
any particular block. And origami, at least, permits this to be either with or
without context—both being convenient at times. A search will penetrate into
folds and open them.

Folding is normally implemented by special comments, which traditionally
use triple-curly-brackets in some form, {{{ to open a fold and }}} to close
a fold. The formats are of course different for different languages with their
different comment conventions. They are also slightly different between folding
editors, which means you cannot switch from one to another, though careful
editing with a non-folding editor can produce code that looks right when folded.

However, it’s better to operate on folding code with a folding editor when
possible. This is because if folding comments are slightly changed (e.g. inden-
tation) the file can become unreadable, or the fold disappear, in the folding
editor view. In that case, careful work in a non-folding editor is needed to
recover.

More about folds will become clear when we examine Connel code.
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3.4 Introduction to Connel
The Connel library sets up macros (including constant, function-like, and code-
block macros) and functions that permit C programs easily to be structured
as communicating Wide processes. Connel does not deal with lightweight
threading, but with separate programs that communicate with one another.
It is designed to run under both Linux and Windows. In fact, the task of
getting it to run both under Linux and Windows was a tremendous education
in practical Wide programming. Just examining the Connel source will provide
this education.

Here, we consider the basics through which Connel causes programs run-
ning under either OS to function in Wide fashion. The center is in named
or physical communication channels, though timer and now graphics events
are also supported. Synchronizing is mainly done on inputs or events. Al-
though synchronizing on outputs also exists, it is generally less useful for three
reasons: (1) Connel allows buffered channels which often means output is
near-instantaneous; (2) due to hardware-software equivalence, we are sticking
with the input/event select() model, and not implementing output ALTs; (3)
if synchrony at output is needed, a single-word input can be programmed in,
and this is necessary if buffering is to be avoided.

Connel, like occam, primarily does blocking communications, although the
buffering can disguise this. Non-blocking communication often uses busy loops,
hides timing, or overwrites shared memory, all undesirable. All Connel coding
should be accompanied by occam-like Wide pseudocoding. This will lead you to
state machine design and Boolean variables. The data is accessible to spies
and testers as it passes.

Connel uses the operating system’s tools to implement multitasking and
communications. This means it does not have to deal with interrupt program-
ming, but it suffers OS overhead, and where this is onerous, user programming
should be designed to mitigate it. Typically, for instance, a single-word ALT
shows which communication partner is ready to talk first, and then another
communication or swap of shared buffers happens that moves the bulk of the
data without blocking and very quickly. The reason it is without blocking is
that the short ALT communication enforced synchrony.

Connel is perfectly capable of programming the Linux or Windows side of
a communication that connects directly, via cable, USB, or Bluetooth, with
an embedded board. In this case, the embedded board is made to drive the
wires according to a standard serial protocol (most embedded chips have this
capability programmed in for some of their pins). A pure blocking, binary
character-mode serial connection is supported in both directions by Connel,
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and after baud rate agreement is settled and junk characters are flushed from
the lines, embedded IO happens at full speed.

3.4.1 Static organization of Connel structs

Connel is intended for connectivity using a static set of connector links and
an indexed set of state machines that are capable of doing select() and other
IO or event operations. What connects on the connector links (connels) is not
necessarily static (see the example of Table 3.2), but highly dynamic design
is avoided. This is because Connel never uses malloc and other OS-based
dynamic resource allocation, with their unavoidable hiding and unpredictable
exhaustion of resources.

The set of connels (connel_t type) is an array of maximum length
CONNEL_MAX, usually 32. Similarly, the set of selectable state machines
(connel_machine_t type) is an array of maximum length CONNEL_SET_MAX,
usually also 32. This permits quick bit tests to be used in the Connel algorithms.
Its limitation on the number of communication channels should not be onerous
in a good-quality program, because select() or any other form of ALT becomes
inefficient between very large numbers of channels. A fan design (compare
Chapter 2 orchard sensors) is the right way to deal with a massively complex IO
network where top-known connectivity is wanted. This leads to clean scientific
and robotic designs.

Each connel is capable of supporting up to three machines: input, output,
and out-of-band (OOB), sometimes called error. As yet we have only imple-
mented input. A set of machines (connel_set_t type) is what is made available
to connel_select, the ALT capability. In actual use it is found that this list
hardly ever needs to change; all the ALTs are called with nearly the same set.
There are occasional variants due to full buffers and the like, and for this I put
in connel_machine_deafen to stop listening and connel_machine_listen to
start listening on a given machine.

You will notice the difference in setup with occam. In occam, the ALT
stands on its own, each one possibly with different channels and with different
Booleans if these are needed. In Connel, it is assumed that the select() is in a
big loop, its list of channels more or less fixed, and Booleans not changing often,
so that a deafen or listen call makes sense on those branches. It’s possible,
but rather bulky, to emulate the more episodic occam setup using Connel. In
practice, the loop is what is done, even in classic occam.
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3.4.2 Connel structs

Here we describe the structs used by connel (all typedefs). There are also a
few bit values and indices in macros.
#define CONNEL_READ_BIT 1
#define CONNEL_WRITE_BIT 2
#define CONNEL_CONNECT_BIT 4
#define CONNEL_CREATE_BIT 8 /* use on c_capability */
#define CONNEL_STATE_SERVER_DISCONNECTED_BIT 8 /* use on c_state */
#define CONNEL_OOB_BIT 16
#define CONNEL_RET_FAILED 1
#define CONNEL_RET_PENDING 2
#define CONNEL_RET_COMPLETED 3
#define CONNEL_TEST_PENDING 2 /* use if forceready */
#define CONNEL_TEST_DONE 1 /* use if NOT forceready */

typedef enum {
CONNEL_STD,
CONNEL_SERIAL,
CONNEL_NAMED_PIPE,
CONNEL_SOCKET

} CONNEL_TYPE;

The macros whose names end in _BIT are to be ANDed with the
c_capability through c_state members of the connel_t struct. The others
are used internally in the connel functions.

The enum refers to the types of connector links that are currently explicitly
supported.

What follows in the next few pages are the structs that Connel uses to
store information necessary for its functions. Note that they contain members
special to both Linux and Windows. In many cases, even the types of the
members are special to one or the other.
/* connel_timeout_t is timeout input to WaitForMultipleObjects or
* select, with a distinction having to be made about an ampersand.
* Note that if CONNEL_LINUX we have defined INFINITE to equal (-1).
* This is apparently the standard Windows definition too.
*/

typedef struct {
long int ct_seconds;
long int ct_microseconds;

} connel_timeout_t;

This struct can denote either an absolute time or a difference. The
ct_microseconds value is always between 0 and 999999, even if ct_seconds
is negative.
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typedef struct connel_machine connel_machine_t;

/* connel_t is a connector link
* For full duplex, requirement of disconnecting is shown by
* !(connector_state&CONNEL_CONNECT_BIT) and
* connector_state&(CONNEL_READ_BIT|CONNEL_WRITE_BIT|CONNEL_OOB_BIT).
*/

typedef struct {
int c_index; /* in connel_list_t or -1 if invalid */
CONNEL_TYPE c_type; /* CONNEL_STD, CONNEL_NAMED_PIPE, etc */
int c_machine_rwebits; /* 1 read, 2 write, 4 OOB (see machine) */
/* The bits of c_pending thru c_state are not indexed by cm_rwe.
* Some of the indices are:
* 0 read
* 1 write
* 2 connect
* 3 create [c_capability only]
* >3 control bits (OOB or states like CTS in serial port)
*/

int c_capability; /* read (1), write (2), connect (4), ... */
int c_pending; /* bitwise: TRUE if pending, FALSE if done */
int c_laststart; /* bitwise: like pending but stays on longer */
int c_state; /* same bits as c_pending plus possibly others */

#ifdef CONNEL_WINDOWS
HANDLE c_handle;
DWORD c_fdwOldMode; /* console save mode */

#else /* CONNEL_LINUX */
int c_fd;
int c_listener_fd; /* used for socket server listen/accept */
connel_machine_t *c_listener_cm; /* required unique for servers */
struct termios c_settingsOld;

#endif
} connel_t;

This is the struct for a generic connector link, whether in Linux or in
Windows. In Linux there is a file descriptor (in fact two file descriptors in the
case of a SOCKLOCAL server), while in Windows there is a HANDLE. Special
space is made to save old console settings.

The shared members are an index in the list (see below), the type of connel,
the usable rwebits, and four state bitmaps. The different bits refer to different
machines that are possible for this connel.
/* connel_list_t is a list maintained of all valid connector links */
typedef struct {

int cl_nvalid; /* > 0 if any connels have been registered */
connel_t *cl_entry[CONNEL_MAX];

} connel_list_t;
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This is a simple current array of connels.
/* connel_machine_t is ENDURING state structure for a kind of event
* triggering WaitForMultipleObjects or select
*/

struct connel_machine {
connel_t *cm_c; /* One connel can have more than 1 event (full dup) */
int cm_rwe; /* -1=invalid, 0=read or connect, 1=write, 2=OOB */
connel_set_t *cm_cs; /* current connel_set if actively selecting */
int cm_cs_index; /* current index in above connel_set */
int cm_index_responding; /* index in OS-dependent set or -1 if deaf */
int cm_nbytes; /* for reads or writes, requirement for completion */
int cm_ndone; /* for reads or writes, number done */

#ifdef CONNEL_WINDOWS
BYTE *cm_data; /* for either read or write */
OVERLAPPED cm_ol; /* needed by SOME synchronization handles */
int cm_repeatcount; /* for Windows console input */
char cm_repeatchar; /* for Windows console input */

#else
char *cm_data; /* for either read or write */

#endif
};

This contains information needed for a select() or WaitForMultipleObjects()
call and for checks that follow it. It must include a data pointer cm_data because
Windows works through asynchronous IO. It has back-pointers to the connel
of which this is a machine, and to the set if ALTing.
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/* connel_set_t is non-timeout input(s) to WaitForMultipleObjects or
* select. This doubles up with the indexed set of cs_cm which feeds
* into the bitmap of cs_responding to indicate whether a given
* machine is currently mapped into the select, and into the bitmap of
* cs_ready for a quick test of already ready stuff.
*/

typedef struct {
unsigned long int cs_responding;
unsigned long int cs_ready;
int cs_ncm;
connel_machine_t *cs_cm[CONNEL_SET_MAX];

#ifdef CONNEL_WINDOWS
int cs_handle_index[CONNEL_SET_MAX];
DWORD cs_ncount;
HANDLE cs_handle[CONNEL_SET_MAX];

#else /* CONNEL_LINUX */
int cs_fdmaxp;
struct {

int cs_nvalid;
fd_set cs_set;

} fp1[3]; /* 0 input, 1 output, 2 error */
#ifdef CONNEL_GRFX

int xcbfd;
int xcbisset;

#endif
#endif
} connel_set_t;

This is the thing that is actually fed into connel_select. It points to all
the machines active in the select. The CONNEL_GRFX #ifdef is some special
information due to the fact that, in the Linux XCB graphics case, an extra
file descriptor is used for graphics events. (In Windows, a special ALTing
routine, MsgWaitForMultipleObjects(), detects graphics as a separate category
of event.) The top two members are bitmaps, the third a count.
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#ifdef CONNEL_GRFX
typedef struct {
#ifdef CONNEL_WINDOWS
HINSTANCE hInstance;
int nCmdShow;
HWND hwnd;
UINT msg;
WPARAM wParam;
LPARAM lParam;
LRESULT ret;
WNDPROC wproc;
LPCTSTR classname;
FILE *fpInput;
FILE *fpOutput;
FILE *fpError;
HANDLE hStdin;
HDC hDC;
HDC hMemDC;
HGDIOBJ hOld;
HBITMAP hBitmap;

#else /* CONNEL_LINUX */
xcb_connection_t *c;
int xcbfd;
xcb_generic_event_t *e;
xcb_screen_t *s;
xcb_window_t w;
xcb_pixmap_t pmap;
xcb_gcontext_t gc;
xcb_image_t *image;

#endif
char *title;
unsigned char *imagebits;

} connel_grfx_t;
#endif

This struct, which is not actually used in the connel.c function code,
supports graphics, which uses the separate library code connel_g.c. Notice
that it is almost completely different between Windows and Linux. Windows
uses a special message event approach with callbacks, always supported, whereas
Linux uses the X Windows library and the XCB library on top of that, and
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these operate through a standard file descriptor.
However, both Linux and Windows support unsigned char *imagebits—

and that is really important. It allows color graphics buffers to be constructed
bit-for-bit the same for both Windows and Linux.

3.5 Connel library calls
These are Connel calls, used in user programs, including macros. The only
other Connel contents that should be used in user programs are the constant
macros.

IMPORTANT: No structs are dynamically declared in Connel.
There are no constructors or destructors, and dynamic memory allocation is
completely avoided in connel.c, though of course it may be used in programs
that call the library. Every call that manipulates struct data, including init,
create, and open calls, must point to an already declared, existing structure.

3.5.1 Callable macros

These are callable macros, either the function type or the type that does not
return a value.

#define CONNEL_IS_SERVER_CONNECTED(c) \
(((c)->c_state)&(~CONNEL_STATE_SERVER_DISCONNECTED_BIT))

Argument: connel_t c where c is a SOCKLOCAL server
Returns: Nonzero if server c is connected.

#define CONNEL_SERVER_DISCONNECT(c)\
...

Argument: connel_t c where c is a SOCKLOCAL server
Returns: Does not return a value

Call this to disconnect a SOCKLOCAL server’s pipe. It uses Disconnect-
NamedPipe() in Windows and close() on the data-transmitting file descriptor
member c_fd in Linux. Returns the server to listening state, awaiting a connect.
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#define CONNEL_FINISH(cs, index, longscratch) do {\
int ncm = (cs)->cs_ncm;\
(longscratch) = ((index) < 0) ? 0 :\
(((index) < ncm) ? (((unsigned long)1)<<(index)) : 0);\

if ((longscratch)&(cs)->cs_ready) {\
(cs)->cs_ready &= ~(longscratch);\

} else {\
(longscratch) = 0;\

}\
} while(0)

Arguments:
connel_set_t *cs
int index
unsigned long longscratch CHANGED
Returns: Does not return a value

Note that longscratch must be a long. This returns longscratch =
(cs)->cs_ready&(1<<(index)). If nonzero, erases that bit from
(cs)->cs_ready. This checks whether the connel_select() involving
cs is finished, and if so, it marks it as ready to start anew.
#define CONNEL_MAKENAME(type, lenno, namein, nameout, pnameout) do {\
...

Arguments:
CONNEL_TYPE type
int lenno
const char[] namein
char[] nameout CHANGED
char *pnameout CHANGED
Returns: Does not return a value

Note that type must be CONNEL_TYPE such as CONNEL_SOCKET
etc, and namein and nameout must be char arrays with something in namein
and lots of room (lenno) in nameout. pnameout must be a char * so that it
can be filled with NULL in some cases.

This makes a name for a serial (number or name) or for a SOCKLOCAL
(name), appropriate to Windows or Linux. In Windows, it puts the serial in
\\.\COM followed by the number or name, and the SOCKLOCAL in \\.\pipe\.
In Linux it puts the serial in /dev/ttyS followed by the number, or /dev/
followed by the name, and the SOCKLOCAL in /tmp/.
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#define CONNEL_DALERT(...)\
...
#define CONNEL_DWARN(...)\
...
#define CONNEL_DINFO(...)\
...

These all take arguments like printf. They return no value.
CONNEL_DALERT always outputs to stderr.
CONNEL_DINFO outputs to stderr if compile parameter CONNEL_QUIET is not
defined, otherwise it does nothing.
CONNEL_DWARN outputs to stderr if compile parameter CONNEL_QUIET is not
defined or is ≤ 1, otherwise it does nothing.

3.5.2 Time functions

These are time-related Connel functions. Please note that one other Connel
function uses the connel_timeout_t struct: connel_select, which always
uses a timeout, which can be immediate, finite, or infinite (or NULL). An
infinite timeout never expires.
int connel_timeout_init(connel_timeout_t *ct);

/* Returns -1 if ct is NULL. Otherwise, outputs current time base in
* ct, and returns 1.
*/

int connel_timebase(connel_timeout_t *ct);

/* Returns 0 and changes nothing if either is INFINITE.
* Returns -1 if either is NULL.
* Returns 1 and increments ct by ctdel if successful.
*/

int connel_timeadd(connel_timeout_t *ct, const connel_timeout_t *ctdel);

/* Returns 0 and changes nothing if either is INFINITE.
* Returns -1 if either is NULL.
*/

int connel_timesub(connel_timeout_t *ct, const connel_timeout_t *ctsub);

/* Returns -1 if ct is NULL. Otherwise, sleeps for max(ct,0). No
* special case for INFINITE, though a long time interval can be
* set.
*/

int connel_sleep(const connel_timeout_t *ct);
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connel_timeout_init initializes a connel_timeout_t struct to an infinite
(never expiring) value, and connel_timebase sets it to the current value of
the operating system timer. connel_sleep makes the system sleep for the
required time step. The other two routines increment or decrement the first
formal parameter by the second.

In all of these, the first member, ct_seconds, of the struct shows the sign
of the time interval, because the second member, ct_microseconds, is always
nonnegative and less than a second.

3.5.3 Connector link functions

These are Connel functions that are related to the connector links (the links
that are defined on the OS level or as hardware). They include synchronous
read and write.

/* Call this once, before any other connel routines. Does
* one-time initialization (in Linux, it sets up SIGPIPE
* to be ignored).
*/

int connel_list_init(connel_list_t *cl);

int connel_begin(connel_list_t *cl, connel_t *c);

/* returns -1 to -3 if bad data;
* returns -4 if (NOT force) and c->c_machine_rwebits shows some
* machine is still active;
* if (force) then it removes it anyway and returns 0.
* Returns 0 if successful.
*/

int connel_end(connel_list_t *cl, connel_t *c, int force);

These are the calls that deal with the master list of connels. Note that
connel_list_init is not a constructor; it initializes an already exist-
ing list to “all invalid”. The other two calls add or remove an already existing
connel to or from the list. No connel should be used until it is attached to the
master list.

The force formal, if set to true, disconnects the connel even if still open
or communicating.
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/* Returns 0 if this cannot be created but must pre-exist.
* Returns -1 if input is illegal or not yet supported.
* Returns -2 if the OS-dependent call failed.
* Returns -3 if the link is already created or open.
*
* Important: Direction is IGNORED except where needed, e.g.
* Linux (not Windows) named pipes. If it is needed, it MUST
* take one of the two values CONNEL_READ_BIT or CONNEL_WRITE_BIT.
*/
int connel_create(const CONNEL_TYPE type, const char name[],
const int direction, connel_t *c);

This call creates the entity to which the connel refers. It is only possible
with those types of connels (as yet, named pipes or sockets) for which such
OS-based creation is possible. It must be called after connel_begin.

/* This is used for a client call in create type links.
* Returns positive if successful.
* Returns -1 if input is illegal or not yet supported.
* Returns -2 if the OS-dependent call failed.
* Returns -3 if the link is already created or open.
*
* Important: Direction is IGNORED except where needed, e.g.
* Linux (not Windows) named pipes or STD. If it is needed, it
* MUST take one of the two values CONNEL_READ_BIT or
* CONNEL_WRITE_BIT.
*/
int connel_open(const CONNEL_TYPE type, const char name[],
const int direction, connel_t *c);

This call opens the entity to which the connel refers. It is only possible
if this entity pre-exists the call (is already in the OS, or has been created
by another program, not this one). It must be called after connel_begin. It
is used for example for keyboard or serial, or for client-side access to named
pipe or socket. Either connel_create or connel_open must be called for a
particular entity, not both.

75



3. Tools

/* This closes but does not delete the name.
* Returns positive if successful.
* Returns 0 if it was already closed (if c_capability = 0 or 8).
* Returns -1 if input is illegal or not yet supported.
* Returns -2 if the OS-dependent call failed.
*/

int connel_close(connel_t *c);

This call closes the connection to the entity that underlies the connel. It
must be called after all communication is done and before connel_end.

/* returns -1 for bad data
* returns -2 if the completed write fails.
* Check for -2 (disconnect) if you are running a server.
*/

int connel_write(connel_t *c, char *buffer, int nbytes);

/* returns < 0 if the completed read fails, or 0 if EOF or
* disconnection.
* Check for 0 or -2 (disconnect) if you are running a server.
* Note that a read of stdin in Windows after asynchronous
* reading can miss some of a set of repeated characters due to
* holding a key down.
*/

int connel_read(connel_t *c, char *buffer, int nbytes);

These calls are synchronous blocking IO calls. They may be called af-
ter connel_begin and either connel_create or connel_open, and before
connel_close and connel_end. For asynchronous IO, use the correspond-
ing calls in the select section.

3.5.4 select()-related functions

These are Connel functions related to select and to asynchronous IO, including
the definitions of the machine sets. Where a connel is an entity determined
by the OS or the hardware, existing either physically or in the file system,
a machine (meaning state machine) is a function of a connel. A machine
moves data in only one direction. It can be input, output, or out-of-band
(input), the last sometimes called “error.” As yet, Connel only supports input
in connel_select.
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/* Windows:
* It also calls CreateEvent if necessary, and returns
* cm->cm_ol.hEvent to be the one that should be pointed to by
* the handle array for WaitForMultipleObjects.
*/
int connel_machine_begin(connel_t *c, connel_machine_t *cm, int rwe);

int connel_machine_end(connel_machine_t *cm, int force);

These calls begin and end the machine that is dependent on a pre-existing
connel. They must be called after connel_create or connel_open, and before
connel_close. The “force” formal, if set true, shuts things down even if a
communication is under way, or if the machine has already been shut down.

#ifdef CONNEL_GRFX
int connel_set_init(connel_set_t *cs, int xcbfd);
#else
int connel_set_init(connel_set_t *cs);
#endif

int connel_machine_add(connel_set_t *cs, connel_machine_t *cm);

These are the calls representing the master set of machines to be
used in connel_select. The connel_set_init call sets it to empty, unless
CONNEL_GRFX is defined in Linux, in which case it connects the “invisible” file
descriptor that handles XCB.

The connel_machine_add call, which must follow connel_set_init and
connel_machine_begin for this machine, adds the machine to the set to
which select() is to be sensitive. There is no corresponding remove call,
since the select() can be made insensitive temporarily or permanently by
connel_machine_deafen. In fact, the newly added machine defaults to deaf,
and connel_machine_listen must be called before a select() will listen to it.
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/* This amounts to turning on the Boolean guard for this cm.
* It does NOT turn on the c_pending which must be dealt with
* afterward. It places it in the OS-dependent list of channels
* responding to the select. If (force) then if already
* listening it returns 0, else -5
*/

int connel_machine_listen(connel_machine_t *cm, int force);

/* This amounts to turning off the Boolean guard for this cm.
* All the pendings corresponding to this cm must be off before
* calling this. It removes it from cs_responding and from the
* OS-dependent list of channels in the select. If (force) then
* if already not listening it returns 0, else -5
*/

int connel_machine_deafen(connel_machine_t *cm, int force);

These are the Boolean guards, referred to above. A newly added machine
defaults to deaf, and connel_machine_listen must be called before a select()
will listen to it. The select() can then be made insensitive temporarily or
permanently by connel_machine_deafen. This cycle can be repeated as many
times as desired.
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/* This should be called only for servers. Returns >0 if
* applicable. Returns 0 and does nothing if it is a non-server
* OR if CONNEL_CONNECT_STATE(cm->cm_c) is nonzero coming in.
* All connel start routines require pending and ready be down
* and, if forceready, that responding be up.
* Note: cm must be in listening state if (forceready), while it
* must not be in listening state if NOT forceready. If NOT
* forceready and Pending is returned, listening must be turned
* on afterward.
*
* Possible outputs ((p,s)=(c_pending,c_state)&CONNEL_CONNECT_BIT
* and r = cm_ready&testresponding)
* Failed: p==FALSE, s==FALSE if not forceready
* p==TRUE, s==FALSE, r=TRUE if forceready
* Pending: p==TRUE, s==TRUE
* Completed: p==FALSE, s==TRUE if not forceready
* p==TRUE, s==TRUE, r==TRUE if forceready
* Returns:
* <0 bad data or structs
* 0 if not applicable (no action) or machine not reader or
* quiescent
* 1 Failed
* 2 Pending
* 3 Completed
*/
int connel_connect_start(connel_machine_t *cm, int forceready);

In practice, forceready is always set to true. This means
the machine must be in listening state.

This sets a SOCKLOCAL server to the state of being sensitive to connection
by a client. It is applicable only to SOCKLOCAL servers: Windows named
pipes and Linux sockets. Before using this, the server must either be in a “virgin”
state, never having been connected, or the macro CONNEL_SERVER_DISCONNECT
must have been called to disconnect an earlier client. Multiple clients are not
allowed.
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/* returns < 0 if the completed read fails, or 0 if EOF or
* disconnection.
* All connel start routines require pending and ready be down
* and, if forceready, that responding be up.
* Note: cm must be in listening state if (forceready), while it
* must not be in listening state if NOT forceready. If NOT
* forceready and Pending is returned, listening must be turned
* on afterward.
*
* Possible outputs ((p,s)=(c_pending,c_state)&CONNEL_CONNECT_BIT
* and r = cm_ready&testresponding)
* Failed: p==FALSE, s==FALSE if not forceready
* p==TRUE, s==FALSE, r=TRUE if forceready
* Pending: p==TRUE, s==TRUE
* Completed: p==FALSE, s==TRUE if not forceready
* p==TRUE, s==TRUE, r==TRUE if forceready
* Returns:
* <0 bad data or structs
* 0 if not applicable (no action) or machine not reader or
* quiescent
* 1 Failed
* 2 Pending
* 3 Completed
*/

int connel_read_start(connel_machine_t *cm, char *buffer,
int nbytes, int forceready);

In practice, forceready is always set to true. This means
the machine must be in listening state. If it is a SOCKLOCAL server, it must
also be connected to a client.

This commits to an asynchronous read. (In the case of Linux, it actually
does nothing but set some state.) Connel requires the commitment to this
read to precede connel_select. Once the select() is done, and this machine
wins the select, the read will either be done, or it will be pending and the
macro CONNEL_FINISH must be called to check when it is done. This is because,
especially with kbd and serial, it is possible for the data transmission to be
subdivided.
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/* Returns negative if error, 0 if timeout, otherwise count+1
* including those of cs_ready. If count > 0, and newready != NULL,
* it depicts the ones of cs_responding&(~cs_ready) that have come
* ready. The non-timeout count=0 case is possible because of a
* Windows keystroke returning no output, or other incomplete data
* transmission.
*
* If it returns -99, it means there is nothing ready, nothing to
* respond to, and the timeout is infinite.
*/

int connel_select(connel_set_t *cs, connel_timeout_t *ct,
unsigned long int *newready);

This is the ALT or select() capability, the heart of Connel. Unlike occam
ALT, but like Linux select() and Windows WaitForMultipleObjects(), it can
allow more than one thing to come ready. Each thing that comes ready should
have a CONNEL_FINISH macro call succeed before its data is used. The optional
*newready will contain bits corresponding to machines that have newly come
ready.

If the timeout is infinite or NULL, it will wait as long as necessary for
another input to become ready. If the timeout is zero, it will return immediately,
and show all inputs that are currently ready. (This behavior is like ALT and
select().) If the timeout is finite and positive, it will prefer input ready to
timing out, if that input comes in time.

In the case of graphics (defined macro CONNEL_GRFX), a check for zero
or more graphics events should always be made when connel_select re-
turns successfully. These should always be flushed completely before another
connel_select call.

3.6 Sample program using Connel
This is a sample program showing many of the operations of Connel in action. It
supports a bidirectional serial IO stream. The input from the serial connection
is output to the screen or redirected in one of three formats, and the input
from the keyboard is output to the serial connection.

Because the serial connel is not SOCKLOCAL, the server/client distinction
and connect capability are not used. No timers are used. Most of the other
capabilities of Connel are demonstrated here.
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#ifndef CONNEL_LINUX
#define CONNEL_WINDOWS
#else
#undef CONNEL_WINDOWS
#endif
#ifdef CONNEL_WINDOWS
#include "..\LAZM\connel.h"
#else
#include "../LAZM/connel.h"
#endif
#define LNAMEOUT 200
int notInterrupted = 1;
#ifdef CONNEL_LINUX
void ctrlc(int sig) {

notInterrupted = 0;
}
#endif
char legalize(char c) {

if ((’\a’ <= c && c <= ’\r’) || (’ ’ <= c && c <= ’~’))
return c;

return ’?’;
}
int main(int argc, char *argv[])
{

char *remargv[10];
int remargc = 0;
char nameout[LNAMEOUT];
char *pname;
char exitchar = ’x’;
int noexitchar = 1; /* if set, then must use Ctrl-C to stop */
int isbinary = 0; /* if set, treat input as binary */
int notQuiet = 1;
int yesdrop = 1; /* standard behavior: close connel. LJD 11/14/11 */
int ret;
... declare connel structs and their pointers
... introduce test program self, get name
... REAL CODE BEGINS
... DO THE ACTION
... END
return 0;

}
}}}

Table 3.4: Toplevel view of sercomio.c in origami (top comments removed)
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{{{ declare connel structs and their pointers
connel_list_t scl;
connel_list_t *cl = &scl;
connel_set_t scs;
connel_set_t *cs = &scs;
connel_t sckbd, scscr, scserial;
connel_t *ckbd = &sckbd;
connel_t *cscr = &scscr;
connel_t *cserial = &scserial;
connel_machine_t scmkbd, scmserinp;
connel_machine_t *cmkbd = &scmkbd;
connel_machine_t *cmserinp = &scmserinp;
}}}

Table 3.5: First fold view in origami

3.6.1 Entrance into the program

A fixed list of Connel structs is declared, after declarations particular to the
main program, and standard C program initialization is carried out.

In the Connel declarations, the customary prefix s refers to the actual
struct, to which a pointer without the prefix is also defined. Usually it is the
pointer that is used in the calls. Note that even though keyboard ckbd and
screen (stdout) cscr are by nature unidirectional, ckbd still has a machine
separately defined for use in connel_select.

By convention, the double dash is used on expected program arguments, with
up to 10 others being collected in remargv. The only one of those used is a num-
ber or name that will be expanded to a serial port name by CONNEL_MAKENAME.

The expected arguments can include --q to minimize chatter, --exitchar
or --noexitchar to determine if a special kill character (other than Ctrl-C) is
watched for, --binary to specify a special, terse hex format for output, and
--nodrop to prevent the closing of the serial connection when the program
quits. The last is useful when another program is waiting to pick up the serial
connection after this one goes down.

3.6.2 Setting up Connel

The code of Table 3.6 is a fold containing all the initial setup calls of the
Connel structs and their state. All programs using Connel should contain a
section like this. Usually, a section from an old or a sample program is picked
up, transplanted, and then modified as needed.
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{{{ introduce test program self, get name
#ifdef CONNEL_LINUX
printf("Linux test case\n");
signal(SIGINT, ctrlc);
#else
printf("Windows test case\n");
#endif
CONNEL_DINFO("sizeof(connel_t) is %d.\n", sizeof(connel_t));
CONNEL_DINFO("sizeof(connel_list_t) is %d.\n", sizeof(connel_list_t));
CONNEL_DINFO("sizeof(connel_machine_t) is %d.\n", sizeof(connel_machine_t));
CONNEL_DINFO("sizeof(connel_set_t) is %d.\n", sizeof(connel_set_t));
CONNEL_DINFO("sizeof(connel_timeout_t) is %d.\n", sizeof(connel_timeout_t));
remargv[0] = argv[0];
remargc = 1;
for (ret=1; ret<argc; ret++) {

if ((strncmp(argv[ret], "--", 2)&&(remargc < 10))) {
remargv[remargc] = argv[ret];
remargc++;

} else if (!strncmp(argv[ret], "--q", 3)) {
notQuiet = 0;

} else if (!strncmp(argv[ret], "--noexitchar", 5)) {
noexitchar = 1;

} else if (!strncmp(argv[ret], "--nodrop", 8)) {
yesdrop = 0;

} else if (!strncmp(argv[ret], "--exitchar=", 11)) {
char thechar = argv[ret][11];
if (thechar) {

noexitchar = 0;
exitchar = thechar;

}
} else if (!strncmp(argv[ret], "--exitchar", 10)) {

noexitchar = 0;
exitchar = ’x’;

} else if (!strncmp(argv[ret], "--binary", 4)) {
isbinary = 1;

}
}
if (remargc < 2) {

CONNEL_DINFO("Syntax: sercomio <com port number>\n");
exit(1);

}
CONNEL_MAKENAME(CONNEL_SERIAL, LNAMEOUT, remargv[1], nameout, pname);
if (pname) CONNEL_DINFO("Concocted name: %s\n", pname);
}}}

Table 3.6: Second fold view in origami
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{{{ REAL CODE BEGINS
... init list and set
... kbd begin, open, machine begin, add
... serial begin, open, serinp machine begin, add
... scr begin and open
}}}

Table 3.7: Third fold view in origami

{{{ init list and set
ret = connel_list_init(cl);
CONNEL_DINFO("connel_list_init returned %d\n", ret);
ret = connel_set_init(cs);
CONNEL_DINFO("connel_set_init returned %d\n", ret);
}}}

Table 3.8: First subfold view in third fold

{{{ kbd begin, open, machine begin, add
ret = connel_begin(cl, ckbd);
CONNEL_DINFO("connel_begin(cl, ckbd) returned %d\n", ret);
ret = connel_open(CONNEL_STD, NULL, CONNEL_READ_BIT, ckbd);
CONNEL_DINFO("connel_open(%d, NULL, %d, ckbd) returned %d\n",

CONNEL_STD, CONNEL_READ_BIT, ret);
ret = connel_machine_begin(ckbd, cmkbd, 0);
CONNEL_DINFO("connel_machine_begin(ckbd, cmkbd, 0) returned %d\n", ret);
ret = connel_machine_add(cs, cmkbd);
CONNEL_DINFO("connel_machine_add(cs, cmkbd) returned %d\n", ret);
}}}

Table 3.9: Second subfold view in third fold

When opened in the fold editor, the code of Table 3.7 presents itself as a
collection of subsections which can be opened in turn.

The master list for the connels, and the master set for the machines to
be used in the select loop, are set up in Table 3.8. Verbose commentary is
available to guide the coder or user in debugging the code. A compile option
can activate it or shut it off.

Table 3.9 does everything necessary for the keyboard and its associated ma-
chine. It also opens the keyboard using CONNEL_STD as description of the connel
and CONNEL_READ_BIT to define its only direction. Note that the keyboard
must be opened before its machine can be begun.

Table 3.10 does everything necessary for the serial and its associated input
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{{{ serial begin, open, serinp machine begin, add
ret = connel_begin(cl, cserial);
CONNEL_DINFO("connel_begin(cl, cserial) returned %d\n", ret);
ret = connel_open(CONNEL_SERIAL, pname,

CONNEL_READ_BIT|CONNEL_WRITE_BIT, cserial);
CONNEL_DINFO("connel_open(%d, %s, %d, cserial) returned %d\n",

CONNEL_SERIAL, pname, CONNEL_READ_BIT|CONNEL_WRITE_BIT, ret);
ret = connel_machine_begin(cserial, cmserinp, 0);
CONNEL_DINFO("connel_machine_begin(cserial, cmserinp, 0) returned %d\n", ret);
ret = connel_machine_add(cs, cmserinp);
CONNEL_DINFO("connel_machine_add(cs, cmserinp) returned %d\n", ret);
}}}

Table 3.10: Third subfold view in third fold

{{{ scr begin and open
ret = connel_begin(cl, cscr);
CONNEL_DINFO("connel_begin(cl, cscr) returned %d\n", ret);
ret = connel_open(CONNEL_STD, NULL, CONNEL_WRITE_BIT, cscr);
CONNEL_DINFO("connel_open(%d, NULL, %d, cscr) returned %d\n",

CONNEL_STD, CONNEL_WRITE_BIT, ret);
}}}

Table 3.11: Fourth subfold view in third fold

machine. Note that the open is bidirectional, and happens before the input-only
machine is begun.

Table 3.11 does what is needed for the screen (stdout). Notice that the
unidirectional connel is also type CONNEL_STD but in the opposite direction.
No machine is defined because we are using input-only select. This works for
programs that are output-ready when output is called, otherwise it may result
in blocking that delays an input.

3.6.3 Active program loop

This is the active loop, together with the listen part of its setup, and a deafen
step in its shutdown. The listen is always necessary, but not the final deafen,
though it can provide valuable status if used.

The view of Table 3.12 is that of the general program, corresponding to
the pseudocode. Critical is the boolean notdone which is an occam device to
avoid early exits. A search on it reveals what can cause the loop to end.

First, the two machines are made to listen, then an asynchronous read is
started for each. (This is Windows style, but does not harm Linux.) In the
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{{{ DO THE ACTION
{

char thechar = ’#’;
char thechar2 = ’&’;
int notdone;
... kbd and serial listen
notdone = (ret > 0)&&(notInterrupted > 0);
if (notdone) {

int ret2;
... kbd and serial read_start
notdone = (ret > 0)||(ret2 > 0);

}
while (notdone) {

unsigned long newready = 0;
ret = connel_select(cs, NULL, &newready);
if (notQuiet) {

CONNEL_DINFO(
"connel_select(cs, NULL, &newready) output %ld, returned %d\n",
newready, ret);

}
newready |= cs->cs_ready;
if (ret > 0) {

... kbd response

... serial response
} else if (ret == -10) {

notdone = 0;
}

}
... kbd and serial deafen

}
}}}

Table 3.12: Fourth fold view in origami

loop, the select is called, always with forceready TRUE, with newready bits
showing what fired. A failure of Linux select (which can happen because the
file descriptor becomes invalid) will cause -10 to be returned, and that branch
exits to avoid a busy spin. There is no timeout.

When the loop is done, the machines may be deafened.
Table 3.13 is the detail of the listen step. Each listen is retried with force

TRUE if necessary, in case it came in in an unexpected state; that approach is
used with the deafen below too.

Table 3.14 is the detail of the first asynchronous trigger of both inputs.
Table 3.15 is the detail of the keyboard response. Note 1 = 20 to relate the

bit test of newready with the second parameter of CONNEL_FINISH. Success
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{{{ kbd and serial listen
ret = connel_machine_listen(cmkbd, 0);
CONNEL_DINFO("connel_machine_listen(cmkbd, 0) returned %d\n", ret);
if (ret<1) {

ret = connel_machine_listen(cmkbd, 1);
CONNEL_DINFO("connel_machine_listen(cmkbd, 1) returned %d\n", ret);

}
ret = connel_machine_listen(cmserinp, 0);
if (ret > 0) {

CONNEL_DINFO("connel_machine_listen(cmserinp, 0) returned %d\n", ret);
if (ret<1) {

ret = connel_machine_listen(cmserinp, 1);
CONNEL_DINFO("connel_machine_listen(cmserinp, 1) returned %d\n", ret);

}
}
}}}

Table 3.13: First subfold view in fourth fold

{{{ kbd and serial read_start
ret = connel_read_start(cmkbd, &thechar, 1, 1);
if (notQuiet) {

CONNEL_DINFO(
"connel_read_start(cmkbd, &thechar, 1, 1) returned %d\n", ret);

CONNEL_DINFO("nbytes %d ndone %d\n",
cmkbd->cm_nbytes, cmkbd->cm_ndone);

}
ret2 = connel_read_start(cmserinp, &thechar2, 1, 1);
if (notQuiet) {

CONNEL_DINFO(
"connel_read_start(cmserinp, &thechar2, 1, 1) returned %d\n", ret2);

CONNEL_DINFO("nbytes %d ndone %d\n",
cmserinp->cm_nbytes, cmserinp->cm_ndone);

}
}}}

Table 3.14: Second subfold view in fourth fold
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{{{ kbd response
if (newready&1) {

unsigned long finish = 0;
notdone = 0;
CONNEL_FINISH(cs, 0, finish);
if (notQuiet) {

CONNEL_DINFO(
"CONNEL_FINISH(cs, 0, finish) returned finish = 0x%lX\n",
finish);

}
if (finish) {

if (notQuiet) {
CONNEL_DINFO("============= KEY byte: 0x%02X %c\n",

(int)thechar, thechar);
}
connel_write(cserial, &thechar, 1);
if (notQuiet) {

CONNEL_DINFO("SERIAL output KEY byte.\n");
} else {

CONNEL_DWARN("Sent byte: 0x%02X \’%c\’\n", (int)thechar, thechar);
}
notdone = noexitchar||(thechar != exitchar);
notdone = notdone&&(notInterrupted > 0);
if (notdone) {

ret = connel_read_start(cmkbd, &thechar, 1, 1);
if (notQuiet) {

CONNEL_DINFO(
"connel_read_start(cmkbd, &thechar, 1, 1) returned %d\n", ret);

}
}

}
}
}}}

Table 3.15: Third subfold view in fourth fold
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{{{ serial response
if (newready&2) {

unsigned long finish = 0;
notdone = 0;
CONNEL_FINISH(cs, 1, finish);
if (notQuiet) {

CONNEL_DINFO(
"CONNEL_FINISH(cs, 1, finish) returned finish = 0x%lX\n",
finish);

}
if (finish) {

if ((cs->cs_cm[1]->cm_c->c_state)==0) {
CONNEL_DWARN(" State of SERIAL is 0 (failed).\n");
notInterrupted = 0;

} else if (isbinary) {
CONNEL_DWARN("%02X\n", (int)((unsigned char)thechar2));

} else if (notQuiet) {
CONNEL_DINFO("========== SERIAL byte: 0x%02X %c\n",

(int)(unsigned char)thechar2, legalize(thechar2));
} else {

CONNEL_DWARN(" Got byte: 0x%02X \’%c\’\n",
(int)(unsigned char)thechar2, legalize(thechar2));

}
notdone = noexitchar||(thechar2 != exitchar);
notdone = notdone&&(notInterrupted > 0);
if (notdone) {

ret = connel_read_start(cmserinp, &thechar2, 1, 1);
if (notQuiet) {

CONNEL_DINFO(
"connel_read_start(cmserinp, &thechar2, 1, 1) returned %d\n", ret);

}
}

}
}
}}}

Table 3.16: Fourth subfold view in fourth fold

causes an unconditional write of the input byte to the serial connection. Either
a Ctrl-C or an exit character can cause the loop to end, otherwise a new
asynchronous keyboard read is started.

Table 3.16 is the detail of the serial input response. Note 2 = 21 to relate
the bit test of newready with the second parameter of CONNEL_FINISH. Success
causes an unconditional write of a response to the input byte via CONNEL_DWARN
or CONNEL_DINFO. The stdout connel cscr is actually not used. Either a Ctrl-C
or an exit character can cause the loop to end, otherwise a new asynchronous
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{{{ kbd and serial deafen
if (yesdrop) {

ret = connel_machine_deafen(cmserinp, 0);
CONNEL_DINFO("connel_machine_deafen(cmserinp, 0) returned %d\n", ret);
if (ret<1) {

ret = connel_machine_deafen(cmserinp, 1);
CONNEL_DINFO("connel_machine_deafen(cmserinp, 1) returned %d\n", ret);

}
}
ret = connel_machine_deafen(cmkbd, 0);
CONNEL_DINFO("connel_machine_deafen(cmkbd, 0) returned %d\n", ret);
if (ret<1) {

ret = connel_machine_deafen(cmkbd, 1);
CONNEL_DINFO("connel_machine_deafen(cmkbd, 1) returned %d\n", ret);

}
}}}

Table 3.17: Fifth subfold view in fourth fold

{{{ END
ret = connel_close(cscr);
CONNEL_DINFO("connel_close(cscr) returned %d\n", ret);
if (yesdrop) {

ret = connel_close(cserial);
CONNEL_DINFO("connel_close(cserial) returned %d\n", ret);

}
ret = connel_close(ckbd);
CONNEL_DINFO("connel_close(ckbd) returned %d\n", ret);
}}}

Table 3.18: Fifth fold view in origami

serial read is started.
After the end of the loop, the inputs are deafened, except that in the case

of –nodrop, the serial is NOT deafened (Table 3.17).

3.6.4 Closing Connel

All Table 3.18 does is to close the connels. Machines do not close, though it
is sometimes useful to deafen them as a final step, as above. In the case of
–nodrop, the serial is NOT closed, leaving it for another program to pick up. -
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3.7 Standard third party tools
We have already covered one of the tools needed for creating and running Wide
code: an editor, preferably a folding editor. The output of an editor is a file of
ASCII text in a file system on a computer running a desktop OS or something
similar (like a tablet OS). The ultimate goal is to run our code in the real world.
That requires several other tools, but the good news is that these tools, in the
case of C programs, are standard tools available from third parties—usually
several competing third parties, so you can pick ones that best fit your needs.

In this section, I will work through software tools for both OS-based and
embedded coding. Hardware design and creation uses a set of different but
related tools, which will be dealt with in a later chapter.

3.7.1 Detailed description of steps

The route from text editor to run for a C program has several components,
which you need to understand so that you won’t be trapped by the “magic” of
pushing a button on a screen. It’s not really all that deep, and every part of it
makes sense if you think about it.

ACTION TOOL ALSO NEEDED

Compile Compiler Header files
Link Linker System routines
Load Loader Physical connection to target
Run UI or power switch Triggering mechanism

Debug Debugger Code disassembler and
bidirectional JTAG or similar

Table 3.19: Needs and tools in sequence

It is necessary to turn the text code into a form of machine-readable code
that can drive the hardware. This is done in two steps: translation of the text
into a form of machine instructions, and packaging these machine instructions
into a set of instructions that will actually drive the hardware. The important
thing is to understand the hidden parts of the two steps.
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3.7.1.1 Stage 1: compiling

The first step (the translation) is called compiling. The text satisfies certain
restrictions that make it uniquely clear to a program, the compiler, exactly
what machine commands are implied by it. The compiler is also capable of
rejecting code that does not fit these restrictions, and does so in a helpful way,
allowing the coder to correct the errors. (Unfortunately, there is no way it can
catch code that is correctly phrased but does not do what the coder intends.)

Almost all code refers to functionality outside itself, the so-called externals.
Because of this, outside information, different from what the coder has created,
is needed by the compiler to tell if the external references are correct. These
are header files which are present in some form. C has the virtue of explic-
itly mentioning them. Often much work must be done to trace the external
references, since header files can #include other header files. So it is in the
sercomio.c example: connel.h proves to reference a large number of system
header files.

So by consulting the header files, the compiler is able to see if the external
references (at least the ones known to the header files) are syntactically correct.
There can be other external references too, not in the header files: all the
compiler can do in this case is check for consistency. All external references
result in a “mark” being placed in the compiled code that says “I’m not
correctly filled in yet!”

3.7.1.2 Stage 2: linking

As implied by the last paragraph, the output machine-type code produced
by the compiler is usually incomplete in two ways: known external references
(fitting header files), and unknown external references. The linking operation
supplies other machine-type code that satisfies all these references correctly,
and produces a code file that is sufficient to run the hardware.

Some prefer to eliminate the distinction between compiling and linking,
especially for embedded code, where the entire source text is often explicitly
available. This is a judgement call, but in my opinion, it is better to subdivide
the program into manageable parts for compiling, for two reasons: (1) If well-
defined, each such part is easier to handle and maintain; and (2) defining the
relations between the parts is a great aid in defining and documenting the
program as a whole. This is modular coding. Even in embedded code, one
massive part of the code may deal mostly with mathematics while another
massive part may deal mostly with interrupts, for example.

The linker, which is often as a program call seen as part of the compiler,
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must access all the real code that corresponds to the external references, whether
or not they had a header file. It’s quite possible for all the parts (object files) to
have compiled correctly and yet they fail to link. This can be for two reasons:
(A) some external does not match any real code; or (B) the descriptions of
the externals (variables, calls, etc) do not match each other or the real code.
Another cause of failure is now more common in embedded code: (C) the
resulting image file is too big to fit in the code space of its chip, or exceeds
the maximum allowed by the (free or low-priced) linker.

The combination of the compiler and the linker yields code that is sufficient
to drive the hardware.

3.7.1.3 Stage 3: loading

After the image file has been created, loading places it in the correct
memory so that it can drive its hardware. This is a more complex problem than
it seems. In many architectures, such as “Harvard architecture,” the memory
out of which code runs is actually different in kind from the memory where
data variables live. In other architectures, especially embedded ones or ones
meant for computer security, code memory cannot normally be written; so a
special state must be used for code to be written at all. In these one speaks of
“burning” new code into the chip’s program memory.

In standard OS-based systems, the usual approach is “load and run” in
one operation, usually either by keying in or scripting a call to the program
in a command line, or by making a selection in a GUI. There are other more
abstruse possibilities, like another program that does an “exec” call to this
one.

It is usually true that the loading process is complex, because the image
file calls for more than one kind of resource. Not only does it need space for its
machine code commands, but normally it requires allocation of data memory
and other resources. Usually (but not always, in the case of interpreted C)
there is a move from mass storage (e.g. disk) to processor memory, perhaps
more than one kind of processor memory.

The loading process is of interest as the way malware gains the ability to
run a computer. In the case of embedded chips, code is loaded only rarely, by
“burning a PROM” or by “upgrading the firmware” as a total body. Special
states and cabling, and often jumpers, are needed to do this.
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3.7.1.4 Stage 4: running

The next step is running or, more precisely, triggering a run. The casual user
may be deceived into thinking that this is a trivial process, since it happens
automatically in an OS and is usually caused by power-on or reset in an
embedded CPU. But it always involves at least two things: (a) preparation
of the CPU state to do the run (either a reset or an allocation of runtime
resources, both usually rather involved); and (b) a so-called “jump” or transfer
of control of at least one CPU core to an instruction within the program. Not
surprisingly, both these steps are also of great interest to writers and fighters
of malware.

Load and run go together only in OS-type code running on a main CPU.
Embedded code may have been loaded to ROM and/or flash memory a long
time ago, and a run merely branches to the start instruction. This makes a big
difference in global variable definitions like

int loopcount = 20;

because merely setting the memory variable loopcount to the initial value 20
at load time does not suffice for embedded code. When restarted, it can have
random data in it. This is why occam disallows definitions like this; you have
to say

INT loopcount :
SEQ
loopcount := 20

which establishes the clear separation. C compilers for embedded CPUs typically
cobble together a special initialization routine, run “before starting,” that does
all the initializations for all the toplevel definitions of this sort.

3.7.1.5 Stage 5: debugging

Perhaps I’m being cynical, but I here include in debugging all actions of
the program after its startup. If you write perfect code, it will of course just
be a normal run! In every case, it will be slavish, legalistic following of every
instruction encountered, until either normal termination (a “jump” outside
the program, usually to a higher level program or to an OS), an interrupt or
nested program that never returns, or power-off or other hardware failure.

Consider the case when something abnormal is happening in the program,
and concerted debugging is done. There are two kinds of debugging: post-
mortem debugging, and monitoring. Both of them require the cooperation of
the OS and/or the hardware, as well as special debugging programs.
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In post-mortem debugging, a correctly designed CPU and OS can take
advantage of the fact that the default behavior of most computer resources
after a program using them has terminated (or been killed) is to do nothing.
Then a properly designed program operating out of different resources can
examine the state left by the terminated program and draw conclusions about
its behavior or misbehavior. Shared resources (e.g. cache) militate against this,
and multicore systems are friendly to it. One core may be able to trickle the
state off another and store it for later examination (an old Transputer trick).

In monitoring, the core under examination, or an emulator of it, not only
does what it is instructed to do but also reports ongoing state to an observer. In
addition, it may allow “poking” like single-stepping or breakpointing through
interfaces like JTAG. This creates a kind of Heisenberg uncertainty since this
monitoring burdens the core (or cores) under observation, and can change
their timing and behavior. Single-stepping in particular is hardly usable for
timing-dependent problems.

A common form of monitoring is done without a debugger, by putting
branches and special informative “diagnostics” into the code. Though this can
cause a hiccup in program progress, the hope is that the syndrome is fully
developed by that time and will reveal itself. In embedded chips an extra serial
connection or other link is often useful for this purpose. Compiler options (such
as were used in sercomio above) can be left in along with the diagnostics,
though this clutters up the code.

3.7.2 Integrated Development Environments

Figure 3.1 shows a startup screen for Code Composer, an Integrated Devel-
opment Environment (IDE) for the Texas Instruments MSP430 family of
embedded CPUs.

IDEs are not only used for embedded cross-compiling (i.e. compiling for
a target different from the CPU the compiler is running on). They are also
available for OS-based compiling, as with Windows Visual Studio.

An IDE combines all the operations listed in the previous subsection,
making them accessible through a GUI. The oldest of them, such as the
Transputer Development System (TDS) of the 1980s, did not need a GUI but
used the ansi.sys selection and control system on a text screen. The key here
is the menu-driven functionality. All you do is make sure all your hardware is
connected properly and powered up, and then open the IDE.

For example, the Energia IDE, which is an MSP430 variant of the famous
Arduino IDE, can run on any of the common operating systems: Linux, Win-
dows, or Mac. In the Kicksat project, we use a Zac Manchester variant of
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Figure 3.1: Code Composer Studio in Windows XP 97
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Energia which has special system files needed to do satellite radio when you are
the satellite. Pick MagGyro_Serial_OK_dbl_blink_w_LJD_Tempmods_R4
(it’s really a .ino file, which is a variant on a C or C++ file, in a subdirectory
of that name) or one of 37 other selections in my Sketchbook, press the go
button (an arrow pointing to the right), and the code gets compiled, linked,
loaded via USB to my Sprite, and a run is triggered.

This is, of course, magic, which is not good enough from the Wide Computing
point of view. The best way to use an IDE is in tandem with non-IDE tools
that access the same files. The first thing you have to do is find the files. That’s
different for every IDE and every OS. Opening a BSD command window on
my Mac, I find
~/Documents/Energia/MagGyro_Serial_OK_dbl_blink_w_LJD_Tempmods_R4

to be the directory that contains my .ino file. I confirm by typing in

file ~/Documents/Energia/\
MagGyro_Serial_OK_dbl_blink_w_LJD_Tempmods_R4/\
MagGyro_Serial_OK_dbl_blink_w_LJD_Tempmods_R4.ino

and it tells me I have a C++ file. (Yes, backslash-Enter lets you fold lines in
both Mac and Linux, not Windows, and I’m using it here so my command
fits in the page. In real life, you do better using tab completion and let the
command get as long as it wants.) I then look in the file and indeed it’s the
file I think it is.

Table 3.19 informs us that we are not done. Where are the header files and
system routines? In the Mac we find them in a huge tree branching from

/Applications/Energia.app/Contents/Resources/Java/hardware/

But more yet is needed, as implied by finding such branches as variants.
Settings imposed by the user are found in the file

~/Library/Energia/preferences.txt

Here’s an example. After a long and fruitless search for the definition of
F_CPU, I returned to preferences.txt and found the suggestive entry

board=lpcc430f5137

Then I went to the tree root given above, and ran the search

grep -rl "lpcc430f5137" *

which should list all the files containing that keyword. msp430/boards.txt
was the only hit. A search for the keyword immediately yielded the line
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lpcc430f5137.build.f_cpu=8000000L

along with other information, like variant=Sprite. Thus, our chip is not the
advertised 16MHz speedster, but the energy-saving 8MHz variant. And some
magic in Energia apparently creates the macro F_CPU out of the lowercased
version in this file.

It’s worth noting that most of these tools exist in BSD (Mac) and Linux,
but Windows lacks some and offers others under different names (FIND instead
of grep, for instance). However, modern systems offer an effective workaround.
Install a virtual machine program, such as VMWare, on your native system (in
my case, a Mac), and then it’s easy to overlap it with virtual machines in the
other OSs. By “overlap” I mean that you can arrange for them to share the
same disk space, except for some system areas that each OS insists on having
private to itself.

After doing this, make sure that as far as possible you force your IDEs
to point to the shared disk space, not the private disk space. Then you can
jump around from one OS to another, using the most effective tools from each.
It’s true that Windows will want to terminate lines with CRLF (hex 0D 0A)
while Linux prefers nl (hex 0A) and the Mac sometimes uses CR (hex 0D), but
except for the last, most tools will deal with any of the above.

3.7.3 Development toolsets

The other way to go, self-documenting and often cheaper and less restrictive,
is to use the command line. For most targets, a small development toolset gets
from source code to running program. Typically, the functions are packaged
into two programs: a compiler (which with different options also functions as a
linker and a disassembler), and a debugger. In the case of OS-based programs,
loading and triggering of the run are usually done by a program command,
using the name or icon of the image file. In the case of embedded code, they
are usually a function of the debugger.

3.7.3.1 The command line

The command line has a major advantage over menus, once you can get it
to work: its short command is a complete specification of what is to be done.
It eliminates frantic sessions, picking one sequence of mouse selections after
another, trying to get the exact one that actually made the thing work. And
command line tools have evolved to lock on to this advantage.

People sometimes dread the command line, because it requires perfect
spelling and ordering of program arguments, sometimes many dozens of char-

99



3. Tools

acters long. Things are actually not that bad. The command line has come a
long way since the IBM keyboard replaced punched cards. Key aids include:

(A) Tab completion and history scrolling: Both command name and filename
typing can usually be helped by tab completion—type part of it, then <Tab>,
and the OS will try to fill in for you. (It helps if the first few letters are unique;
if not, it goes as far as it can.) And once you’ve got it to work, up-arrow history
scrolling will let you rerun it, and a one-line editor lets you change it.

This works in all the OSs, and is convenient enough to be dangerous: rely
on it too much, in a VM which saves state of multiple screens across sessions,
and a crash that “forgets” some of it can lose you a lot of information! But
the history command lets you transfer it to a file, at least in Linux and Mac;
for Windows you have to use F7 and a cut and paste.

(B) Scripts: Runnable text files, bash scripts in Linux and BSD (Mac) and
.BAT (“batch” or “PowerShell”) scripts on the Windows command line, are
key to doing any repeatable work. They consist of commands, sometimes glued
together by control words which look like a coding language but are actually
special commands carried out by the operating system command processor.
The syntax is very similar between Linux and BSD but the Windows syntax is
different and uses a lot of % signs.

The wise programmer (wiser than I’ve been lots of times) moves his history
into a script rather frequently, and takes the trouble to put in parameters that
let him vary it. Then everything is documented, for months and years in the
future. Command-line functionality tends to be stable, not changing “out from
under you” but at most, with new versions, adding capabilities.

(C) Makefiles: Finally, there is the Makefile, a kind of super-script run by
the program make in Linux or BSD and by NMAKE in Windows. As its name
indicates, this is a setup especially adapted to build programs. You can think
of it as using a lot of clues (continually updated in your Makefile and checked
in the file system, especially dates) to build a script on the fly, and then run it.
Typically you do the whole job by typing in make or NMAKE—nothing more!

But you can do special jobs with keywords like

make clean

or

make debug

—in fact, anything you want. If you think it over, this is as useful as any IDE in
ordinary use. It is completely self-documenting. It requires a little more effort
to maintain, but is more flexible and completely under your control. The best
way to learn Makefiles is to find a simple template program with a Makefile
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on the Internet, and then to vary it and its Makefile into something of your
design.

3.7.3.2 Setup and serial

Setup is of critical importance and can take many forms. In every usual case
there is electric power and some form of connection. All five tasks (compilation,
linking, loading, triggering of run, and successful run or debugging) must be
supported by the connection, though not necessarily the same connection, at
some time. Usually if loading is supported then the connection is complete and
all the rest is also supported.

In the case of pure OS-based programming, the minimum is usually mass
storage (disk), keyboard, screen, and OS CPU (and memory), with their intercon-
nections. Embedded cross-compiling work requires more, a second (embedded)
CPU/memory with at least a serial connection or other link with the first, and
usually with yet more connections related to its purpose. However, past the
loading stage, the OS components may fall away. And it’s possible, though not
usual, that compiling and linking may be done without the embedded CPU
present, and loading with only a bare connection to a powered embedded CPU.

The reason this is not usual is that testing of new code is usually required,
and it is more convenient to have the whole setup ready than to pause and
redo the physical configuration between the phases of the work. I’ve done it
though, with Kicksat work, when I’m not the one with our group’s Flying
Sprite prototype.

When setting up OS machines, it’s convenient to use a virtual machine
program like VMWare to get several machines for the price of one. Then the
question immediately arises how to get them communicating. The simplest
Wide approach is a serial connection, which in this case is a virtual serial
connection between two virtual machines. It is set up by adding a few lines to
the configuration files that describe the VMs.

In [5] it describes where these files are, at least in Mac VMWare Fusion.
(Other systems will have similar paths.) After setting up my Ubuntu 9.04 under
the name “Ubuntu” I found the virtual serial in
~/Documents/Virtual Machines.localized/Ubuntu.vmwarevm/Ubuntu.vmx

and, following the instructions in [6], added these lines:
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serial1.present = "TRUE"
serial1.fileType = "pipe"
serial1.yieldOnMsrRead = "TRUE"
serial1.startConnected = "TRUE"
serial1.fileName = "/tmp/dev_com"

They follow immediately after serial0 which was found already defined for
fileType thinprint. In the similarly named vmx file in the Windows XP
vmwarevm directory, I added

serial1.present = "TRUE"
serial1.fileType = "pipe"
serial1.yieldOnMsrRead = "TRUE"
serial1.startConnected = "TRUE"
serial1.fileName = "/tmp/dev_com"
serial1.pipe.endPoint = "client"

because it too was using serial0 for thinprint.
This activated /dev/ttyS1 and COM2 respectively, just as if they were

physical connections. They connect with each other because the fileName is
the same.

Like real serial connections, they still will not talk properly unless their
baud rate, data bits, stop bits, and parity settings are the same. In Linux, use
stty both to find and change these.

stty -F /dev/ttyS1 -a

should show the right baud rate, no parity (-parenb), 8 data bits (cs8), one
stop bit (-cstopb). A baud rate change, for example, would be

stty -F /dev/ttyS1 9600

(see man file for more). In Windows, use MODE for the same:

MODE COM2

gives the information and

MODE COM2:9600,N,8,1

makes the settings. (Many other baud rates are possible, up to 115200. Bytes
per second is typically baud rate divided by 10.)

To test this, run sercomio on both sides, using standard (not QUIET)
compiled version. In the example given, it would be

./sercomio 1
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(for /dev/ttyS1) on the Linux side and

sercomio 2

(for COM2) on the Windows side. Then key in some characters from both
sides. They should be echoed on the other. To end, use Ctrl-C.

3.7.3.3 From compilers to debuggers

Once the machines for which code is to be written have been set up with
proper connectivity, it is also necessary to connect them to machines which
will compile, link, load, trigger and debug the code. Even if these are the same
machines, the connections are not necessarily the same. Typically, Universal
Serial Bus (USB) is the great connector through which code is loaded and,
often, through which embedded devices are powered. Extra cables may be
needed for JTAG debugging too.

Here is where Wide Computing techniques come into their own. The laying
of the foundation, the initial job, under the Wide scheme is to get all these
parts talking properly. As in our previous exercise with sercomio, they do
not have to say much. All we need is little programs, running and communicating
on all our real CPUs and virtual machines. What they communicate does not
have to have much resemblance to the final goal; it just has to operate the
same “chat lines.”

Before the prospective coder draws back in consternation from this front-
loaded task, let me mention the mighty friend that makes it all pretty easy:
the Internet. Every single component in the setup is a product that
somebody has to sell (or, in the case of free software, give away). They all want
their stuff to be used! Therefore the Internet is full of descriptions, apnotes, and
worked-through examples (complete with pictures) that you can find with a
simple Google search. Just enter every specifying term, correctly spelled, in no
particular order, and put quotes around terms that belong together. Examples:

dos "serial port" status

or

windows msp430 jtag debugger

(it is case-insensitive). The more necessarily relevant stuff you can give Google,
the better it can narrow it down.

I do this all the time. It has worked for me for the last ten years.
You will almost always find your way to details that are poorly explained

or simply omitted, so don’t be discouraged if your experimental runs fail at
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first. You are doing the most critical and valuable part of your project. Just
persist, search FAQs and user group commentary, and even join the user group
if you need to post a question. In the end, it will either work or you will be
lionized as the one who forced a redesign of the whole product! (Don’t worry.
The latter case is pretty rare. It’s just that you sometimes have to do weird,
unintuitive stuff to make it work.)

Here’s an example from embedded coding:

mspdebug olimex --fet-force-id msp430f5418

Here mspdebug is an open-source debugger for the Texas Instruments MSP430
family, and the Olimex is a good JTAG connector that lets you load and debug
code. The chip we used was NOT the MSP430F5418, and was not offered as
one of the possible options! But some research found that this was a common
problem, and if chips were similar enough (for example, just differing in amount
of program memory) you could get away with specifying a different chip using
the --fet-force-id option.

Less difficult are the typical compile and link commands used by programs
in an OS. Here, from the Makefile, is the Linux sequence for sercomio:

tjoccam@ubuntu:/mnt/hgfs/tjoccam/SpcTime/LAZM$ make -n sercomio
gcc -DCONNEL_LINUX -c sercomio.c
gcc -DCONNEL_LINUX -c connel.c
gcc -o sercomio sercomio.o connel.o

And here is the Windows sequence, which must be run from within a Visual
Studio Command Prompt window:

Y:\tjoccam\SpcTime\LAZM>NMAKE /N sercomio.exe

Microsoft (R) Program Maintenance Utility Version 9.00.30729.01
Copyright (C) Microsoft Corporation. All rights reserved.

cl /c sercomio.c
cl /c connel.c
cl sercomio.obj connel.obj User32.lib

Note the use of the makefile and the special display-only option of make or
NMAKE to show what is called. To make this display work, you may have to
temporarily rename the object files to fool make into thinking it has to redo
the whole thing.

Finally, here is a variant of embedded calls that do a cross-compile for the
MSP430:
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msp430-gcc -mmcu=msp430f5418 -g -Wall -c -MMD -o\
m-asm.lo mmbase.S -Xassembler -al |\
sed -e’s/\/tmp\/........[.][os]//g’ > asmlisting
msp430-gcc -mmcu=msp430f5418 -g -Wall -c -MMD -o\
m-c.lo m.c -Xassembler -al |\
sed -e’s/\/tmp\/........[.][os]//g’ > clisting

This assembles mmbase.S and compiles m.c, using -al to generate disassembled
listings, and the sed scripts to remove clutter.
msp430-gcc -mmcu=msp430f5418 -g -Wimplicit -Os\
-o basem base-driver.o base-core.o ../base/m/m.o\
-Xlinker --print-map | sed -e’s/\/tmp\/........[.][os]//g’ > map

This (after more work) is the linking, using --print-map to generate a dis-
assembled map, and sed script to remove clutter. (The listings are extremely
useful during debugging, since they give exact addresses in the code.) Simpler
forms are found in Makefiles, and basem is able to be loaded to the embedded
CPU called “base”.

Note that in these command-line calls, unlike Google search, the arguments
are NOT case-insensitive. Also, dashes and underscores are not equivalent, a
frequent point of confusion for a beginner. If there are embedded spaces in an
argument, it is usually OK to enclose it in quotes, e.g.

confundus --file "big ugly"

and the command interpreter strips away the quotes and treats what is inside
them as only one argument, not two. There are other tricks (like using \" if
the quote is really part of the argument) that you will pick up as you go along.

Once you have discovered these secrets, don’t forget them! Enshrine them
in a script or Makefile, or write yourself a little apnote.

3.7.4 Vanishing code and other oddities

Whether an IDE or a toolset is used, fantastic behavior is sometimes encountered
that comes, not from the program code, but from the tool. The ultimate cause
of most of this is the Deep Programming monoculture and some of the odd
decisions that have been made to band-aid its problems. However, Deep or
Wide, these can bite you, and I’ll warn you here of some that I have encountered.
This may save you days of wasted debugging effort.
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3.7.4.1 The vanishing code codicil

Many perfectly sane and logical usages in C and other languages produce,
according to the language definition, “undefined” results. This usually means
(and probably originally was intended to mean) different results depending on
implementation, e.g. big-endian versus little-endian. The normal toolmaker’s
response in such a case would be to make a best effort and, perhaps, issue a
warning. Some compilers, typically Windows compilers, do this.

Other much-used and even unavoidable compilers, such as gcc, follow a
so-called language lawyer approach. This means doing the strict minimum that
the definition allows. In many cases this means—no code output! And no
errors or warnings either. Your code simply vanishes, and the only way to tell
this is to use a disassembler and look at the machine code output.

A common example of this is strict aliasing, which says that after
casting a pointer to a pointer of a different type, every dereference is undefined.
Example:

{
double x;
unsigned char *xbytes = (unsigned char *)&x;
/* perform byte-by-byte operations on the 8-byte
* double-precision floating-point variable x
*/

}

In some compilers, like gcc at higher optimization levels, the code you put
here will simply vanish, even though you know the target and have researched
how the bytes of a double are dealt with in your target architecture. See [3].
An exception is made for memcpy, since otherwise hardly any code would work,
and char will sometimes work where unsigned char will not.

You just work around absurdities like this—for instance, by using a union—
although strictly speaking unions are illegal too! (They just haven’t dared to
crush them.) Only Linus Torvalds ([4]) can actually fight it. He made them
include a compiler option

-fno-strict-aliasing

but they struck back by not documenting it.

3.7.4.2 Mixed ordering

It might seem logical for the compiler to try to order the memory assigned to
the variables in the same order the variables are declared. Windows compilers
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tend to do this (although they pack variables smaller than a word in a way
that will save space). But gcc apparently randomizes the placement of the
variables. Never expect there to be any memory coherency on a scale bigger
than that of the actual variables declared.

Even code location can be swapped around, especially by an optimizing
compiler. Loops can be unwrapped or partially unwrapped. And, of course,
variables can disappear entirely or be reduced to registers, especially if nothing
accesses a pointer to the variable. Always declare a variable volatile if
anything outside the code being compiled can affect its value, or even tacitly
read its value.

3.7.4.3 State machines

Though not strictly speaking the compiler’s fault, unintuitive state machines
can wreak havoc. If interrupts or multitasking are sharing a resource, such as
a state variable, it can change its value between being set and what appears to
be an immediately following test. A FIFO can become empty or full between
one instruction and the next!

Always be sure you know under what conditions other code can interrupt
or pre-empt your code stream. Wide Computing allows occam-like variables,
which by design are usually immune to this kind of thing, to be mixed with C
conveniences like global variables. The best thing is to use lots of comments
and documentation to keep track of such dangerous exceptions.
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4Second Wave: Pseudocode
The Hardware And The Data
Flow

Abstract

The purpose of this chapter is to detail the techniques of pseudocoding.
These assume that the First Wave of project design is complete, so that
the tasks to be done and major pieces to do them are known. The Second
Wave defines a state machine that will actually work, down to each bit
flipping at the right time. This operates on several levels. As examples
of focused (low-level) pseudocoding we offer two FIFO designs, and as
examples of data-flow (high-level) pseudocoding we proceed with the
projects discussed in Chapter 2.

4.1 The step from design to pseudocode
The purpose of Second Wave Wide programming, or pseudocoding, is to define
mechanism. The First Wave has proved plausibility of the project by tracking
its tasks through its component pieces, using knowledge and published specs
to make sure that you are not biting off more that you can chew. When the
First Wave is done, it should be clear that each demand on the resources you
have assembled is well within their ability to fulfill. But just showing that the
door is big enough for the piano is not enough.

After all, your goal is a program—which means a set of “laws” (instructions)
which, when followed with slavish, uncritical devotion, will reliably cause the
results you want. That could mean thousands of lines of code, an intimidating
prospect if you just mean to jump in. Wide Programming and Second Wave
pseudocoding come to the rescue, because they have identified most of these
lines of code as being in the “regular” (non-critical) parts, and permit the
critical parts to be expressed in a clear formalism (see [1], Section 2).

My repeated metaphor of “waves” is based on experience. There ought to be
a pause for reflection (and discussion) after each wave. Frequently, something
does not work and an earlier wave has to be modified. Rushing forward is
followed by backing off, but the tide comes in a little each time. This front-loaded
effort does NOT fit the corporate accounting model of steady value-per-hour
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progress, but is more like poetry! That is why so many outsourced computing
projects are such disasters.

This knowledge is literally worth hundreds of millions of dollars, as recent
news of failing software projects should make clear. Unfortunately, this value can
hardly ever be realized, since corporate and government planners, who control
the money, will not budge from their assumptions. So don’t be disappointed.
Just keep plugging along successfully with your small self-funded projects, while
enjoying your front-row seat at the demolition derby of the giants—including
Nissan, Toyota, and GM at latest report ([13]).

Anyway, let’s return from that digression to the question of regular versus
critical. Pseudocode typically puts in a comment or unexpanded PROC call
to represent regular code, while working out every detail of the critical code.
And that leads to another consideration. [1] defines critical code as that which
is outside the shared universal implication of the metaphoric construct, a
definition which is aimed at language considerations. Here we are using a
simple language, not an object-oriented one, so we can focus on timing and
state variations outside the shared universal of the code. In other words, regular
code is that which works the same independently of outside behavior, while
critical code depends significantly on outside behavior.

An example of regular code would be a long math-crunching operation.
As a low-priority “nice” process, it may be interrupted or swapped out by
other processes, but that should not significantly affect its work. But what if it
depends, say, on a web search that may be delayed or give an unexpected result?
The math-crunching operation now looks like regular code when viewed at a
distance, but a close-up view shows it has a complex structure that includes
critical parts.

So pseudocode frequently has to be nested. Another block of pseudocode
may be denoted by a comment, or by a procedure call or a fold. In many
cases, commentary is enough to describe the real coding task that is demanded,
thus avoiding doubling up the labor, e.g. coding a long CASE statement in
occam that is just going to be recoded in a long switch statement in C. But
beware! That escape should be used only if the expansion is truly
trivial. It’s easy to “kid yourself” and gloss over some critical code that is
really a hard nut to crack, or even a design flaw.

The general rule is that a CASE can be waved at, but not an ALT. If
some of the branches involve state machine waits, then at least these should
be pseudocoded in detail.
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4.2 Focused pseudocoding of some FIFOs
The first examples will be of focused pseudocoding. This is very close to real
occam programming, and is usually used to design low-level hardware or
something very close to it. The idea is to imply a fully detailed state machine as
a specification. Later implementations may not greatly resemble the pseudocode,
since they can use combinatorial as well as sequential hardware design, but
they are required to perform exactly as the pseudocode implies.

The example here is a common component of basic hardware: a First-In
First-Out (FIFO) buffer. This is the same as a queue. In it, up to a certain
capacity, packets can be stored and later output in the order of their reception.
Contrast it with a stack, or Last-In First-Out (LIFO) buffer.

The size of a packet is usually fixed, but can be any value. Even one-
bit packets can be queued in a “shift register.” A shift register is usually
synchronous, meaning every member of the queue moves one slot upon a clock
signal. That, however, is too inflexible for most queue uses with packets of one
byte or bigger. Usually an asynchronous design is desired, where the packet
input and the packet output are under independent external timing controls.

4.2.1 Simple FIFO

The simplest asynchronous FIFO design is rawFIFO, a PAR of n identical
members, specified in Table 4.1.

When considering the design of rawFIFO, remember the definition of a
PAR in Chapter 3. The execution of members of the PAR can be ordered
in any way that is consistent with points of synchronization (that is here
communication on a channel). This includes interleaving, sequence, or true
parallel.

In focused hardware pseudocoding, internal channels as well as programming
and internal (local) variables are a convenience serving to define the device’s
behavior from the point of view of the outside world. Also usually convenient
is a presumption that internal activity is “fast” compared with interactions
with the outside world. These two considerations lead to the definition of a
stable state as a state that cannot change as long as the part of it that is
shared with the outside world does not change.

Now rawFIFO (with n=5) can be visualized as Figure 4.1, with the external
channels in and out connecting to buffer.d[4] and buffer.d[0] respectively.
(Here remember period in occam, like underscore in C, is part of names; and I
am using buffer.d[k] to refer to that instance of PROC buffer that is called
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-- This is a raw FIFO implemented in occam-like Crawl Space
-- pseudocode. It is the raw or theoretical FIFO of n parallel
-- buffers, each storing one PACKET and passing it on as soon as
-- possible. An actual implementation of a FIFO using this approach
-- is usually not practical, since it passes each packet a large
-- number of times internally, and a circular indexing system as in
-- "FIFO.occ" is preferred. However, this is the defining standard
-- against which any FIFO implementation (software or hardware) is
-- judged.
-- Global resources are:
-- CHAN OF PACKET in : for the input to the FIFO
-- CHAN OF PACKET out : for the output from the FIFO
-- The size of the FIFO is defined below. (The structure assumes
-- n >= 2.)
VAL INT n IS 32 :
VAL INT nm1 IS n - 1 :
VAL INT nm2 IS n - 2 :
-- this buffer code is repeated n times in parallel
PROC buffer(CHAN OF PACKET enterch, exitch, PACKET pkt)
WHILE TRUE
SEQ

enterch ? pkt
exitch ! pkt

:
-- this is the main program and its local resources
[n]PACKET pktall : -- for clarity; these could be local to the buffers
[nm1]CHAN OF PACKET ch : -- ch[n-1]=in and ch[-1]=out, conceptually
PAR

buffer(ch[0], out, pktall[0])
PAR i FROM 1 FOR nm2
buffer(ch[i], ch[i-1], pktall[i])

buffer(in, ch[nm2], pktall[nm1])
--END PAR
}}}

Table 4.1: Toplevel view of rawFIFO.occ in origami (irrelevant comments
removed)
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Figure 4.1: rawFIFO (n = 5)

with pktall[k].) All the links operate only in one direction, which means that
information is transmitted “backwards” (toward in) only by blocking.

Since this is a FIFO that is being designed, internal FIFOs in the channels
would be superfluous. An output transmission (!) by buffer.d[k] is there-
fore simultaneous with an input reception (?) by buffer.d[k-1] to its right.
Branching, looping and communicating are clearly not stable states, since they
proceed to completion. Therefore the only stable state candidates for each
member of the PAR are just before the input and just before the output, which
can be points of blocking. They will be denoted ? and ! respectively, resulting
in an n-letter word made of these characters.

It is immediately obvious that !? anywhere in this word is not stable, since
a communication can and will begin immediately. Therefore all the ! must be
to the right of all the ?. It follows that the only stable states are denoted by
the count of ! (waits on output):

????? 0
????! 1
???!! 2
??!!! 3
?!!!! 4
!!!!! 5

Closer examination shows that each member of the PAR begins at an input,
so that stable state 0 is the initial state. An internal packet communication
means a !? changes to a ?! in the word, but a packet coming in on in causes
the leftmost ? to change to !, and a packet leaving on out causes the rightmost
! to change to ?. Therefore the first state change from stable state 0 has to be
a packet input on in.
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Figure 4.2: Unstable after in

Figure 4.3: Unstable after out

The key insight is that information flows to the right. Therefore even though
after !? changes to ?! the packet still remains in the left member (it’s a copy
not a move), it can be treated as a move, and the left copy of the packet can
be ignored. It will be overwritten as soon as new information enters from in.
A member’s buffer is full if it has received data that it has not re-transmitted,
and empty if either it has never received data, or if the data it currently
contains has been re-transmitted. This means that (whether stable or unstable)
! always means full, and ? always means empty.

Figure 4.2 is an unstable state with two packets ready to output, and a new
packet just input. It corresponds to !??!!. Figure 4.3 is an unstable state that
came from a stable state of three packets queued, but the rightmost packet
was just output. It corresponds to ??!!?. It is easy to see how these will “fix”
themselves (if they are given time) and reach the stable states ??!!! and ???!!
respectively.

Inspection shows that, if the code is strictly followed, Figure 4.4 cannot
happen. The transmission from [2] to [1] cannot be at the same time as that
from [1] to [0], because of the sequence in [1]. If PROC buffer were made into a
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Figure 4.4: Simultaneous move ?

loop on PAR, that would not solve this problem, since the shared buffer would
be illegal. And yet it seems that the simultaneous communications would be
the most time-efficient way to do the move.

Not quite. The communication into [1] must lag a little behind that out of
[1], otherwise the value transmitted out will be uncertain. Careful hardware
can make this lag much less than a packet, thus improving on the efficiency of
the strict occam rawFIFO. Given that the pseudocode is intended to define the
function of the FIFO (its behavior to the outside world), this is perfectly OK.

4.2.2 Circular indexed FIFO

In any case, there is an inefficiency with rawFIFO, in that every packet must
be transmitted n-1 times internally. One can imagine the FIFO as a circular
buffer, with rotating input and output access, where input can fire whenever
the buffer is not full and output can fire whenever it is not empty. “Rotating
input and output access” can be modeled by two indices. But the necessary
race presents a difficulty. It would be most simply represented by an ALT
on both input and output. And, like the occam language, I have settled on
input-only ALTs.

Why? The reason is that for a pure CSP communication, both sides have to
act independently, not under control of an all-knowing supervisor. That is crit-
ical to the goal of simplifying design by dividing it into multiple independently
maintained entities. Therefore, to avoid an infinite regress, that means one side
of each communication has to commit unconditionally to communicating. In
the occam tradition, it is the output side.

This is actually expressed in Transputer design. At one point I said that
Transputer occam communication is almost unbuffered. This is because when
two Transputers are connected by a wired link, the outputting side always
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-- This is a FIFO implemented in occam-like Crawl Space pseudocode.
-- On a fast system it is equivalent to n parallel buffers, each
-- storing one PACKET and passing it on as soon as possible.
-- Global resources are:
-- CHAN OF PACKET in : for the input to the FIFO
-- CHAN OF PACKET out : for the output from the FIFO
-- The size of the FIFO is defined below.
VAL INT n IS 32 :
... PROC shelf(CHAN OF PACKET out, fromstore, CHAN OF BOOL need, PACKET pkt)
... PROC store(CHAN OF PACKET in, toshelf, CHAN OF BOOL need, []PACKET pkt)
... main program with local resources
}}}

Table 4.2: Toplevel view of FIFO.occ in origami (irrelevant comments removed)

starts the communication by sending one byte across the link. That byte is
committed, though if the receiver never sends an ACK, then the communication
is deemed not to be complete. There can be an ALT on the receiving side, and
the link may not be the winner. Every point-to-point communication between
independent hardware entities must deal with this problem in a similar way.

It would be possible to reverse this, and have the receiver send a REQ
before the transmitter sends a byte, but you cannot have it both ways on the
same communication. It would even be possible to have a FIFO that did ACK-
type communication on its input end and REQ-type communication on its
output end, and then the input and output ALT FIFO would be possible. But
this has strange and nonstandard implications, and we can save the standard
communication order with a special member of the PAR. Table 4.2 shows the
solution.

In FIFO, the storage is divided into a one-packet shelf and an n-1-packet
store. Here, shelf corresponds to pktall[0] in rawFIFO, the buffer just
before the external output channel. The circular buffer store corresponds to
all the other storage in rawFIFO. And a new, upstream internal channel is
added, through which shelf can send an event (a timing-only communication,
here represented by a BOOL) to store. The analogy is to a retail shelf and a
backroom store.

Table 4.3 shows the programming of shelf. It is like buffer in rawFIFO
except that, before inputting a new packet, it sends its ready signal to the
upstream member. This allows the upstream member to handle the circular
buffer with an input-only ALT.

Table 4.4 shows the coding for a circular buffer. Indexing takes the place of
the internal communications of rawFIFO. Here a feature of the ALT implemen-
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{{{ PROC shelf(CHAN OF PACKET out, fromstore, CHAN OF BOOL need, PACKET pkt)
PROC shelf(CHAN OF PACKET out, fromstore, CHAN OF BOOL need, PACKET pkt)

WHILE TRUE
SEQ

-- When waiting on following instruction, shelf is EMPTY.
need ! TRUE -- Because of the nature of the code of PROC store,
fromstore ? pkt -- this input communication NEVER blocks.
-- When waiting on following instruction, shelf is FULL.
out ! pkt

:
}}}

Table 4.3: First fold view in origami

tation in [2] is of great importance. If shelf reaches the communication on
channel need first, it must clearly block waiting for store to execute an ALT
in which need wins. But if store gets there first, then shelf still has to block,
because control has to go back to store to disable (adjudicate) the ALT and
declare need the winner. Therefore, in every case, the first thing to happen
after the event is that store will run its code to the point of outputting on
toshelf. It must there block, because shelf hasn’t had a chance to run yet,
and shelf will then run and do the input on fromstore without having to
wait. And even though store has to block momentarily while shelf is doing
this, shelf will quickly run to block at output either on out or on need, and
store will run back to the ALT.

Therefore the only possibilities for stable states in shelf are at the outputs,
not the input. And the only possibility for a stable state in store is at the ALT.
The state where shelf is at the output on need and store has fl > 0 is not
stable because the ALT will immediately fire and a packet will be transmitted
to shelf. Therefore shelf can be waiting at either need or out if fl = 0 but
must be waiting at out if fl > 0. These correspond to queue length 0, 1, and
fl+1, respectively.

Both shelf and store above are PROCs, exactly like void functions in
C, and they must be called, their formals filled in, in a calling program (like
main). Table 4.5 shows this. Each packet is communicated three times: input
on in, internally on passer, and output on out. The upstream communication
on need is done with a minimum of data transmission, and since the value of
its BOOL is never checked, can be implemented by a timing-only event.
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{{{ PROC store(CHAN OF PACKET in, toshelf, CHAN OF BOOL need, []PACKET pkt)
PROC store(CHAN OF PACKET in, toshelf, CHAN OF BOOL need, []PACKET pkt)

VAL INT nm1 IS n - 1:
VAL INT nm2 IS n - 2:
INT fl, indin, indout :
BOOL ready :
SEQ
indin := 0 -- input index
indout := 0 -- output index
fl := 0 -- number of packets (starts empty)
WHILE TRUE
PRI ALT
-- If there is stuff in store, stocking the shelf takes priority
(fl > 0) & need ? ready
SEQ
toshelf ! pkt[indout]
IF
indout < nm2
indout := indout + 1

TRUE
indout := 0

fl := fl - 1
-- If the store is not full, new packets are input.
-- Starvation of this line is not possible because output will
-- soon lead to fl = 0, which deactivates the top alternative.
(fl < nm1) & in ? pkt[indin]
SEQ
IF
indin < nm2
indin := indin + 1

TRUE
indin := 0

fl := fl + 1
:
}}}

Table 4.4: Second fold view in origami
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{{{ main program with local resources
[n]PACKET pktall :
CHAN OF PACKET passer :
CHAN OF BOOL need :
PAR
store(in, passer, need, [pktall FROM 1 FOR n-1])
shelf(out, passer, need, pktall[0])

--END PAR
}}}

Table 4.5: Third fold view in origami

Time Initial resources and data

Initialization

Input Output

Resource Channels Channels Resource

ownership ownership

and data and data

Termination

Final resources and data?

-

?

?

-

Figure 4.5: Box data and resource flow over time (strictly enforced)

4.2.3 Startup, shutdown, and nesting

Both programs described above are somewhat fragmentary, because they omit
details of startup and shutdown. See Figure 4.5, which was taken from [1].

The structure both of rawFIFO.occ and FIFO.occ consists of some initial-
ization, followed by outer PARs with members ending in a WHILE TRUE loop.
This is like the “setup” and “loop” approach found in many embedded IDEs
like Arduino and its variants.
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It begs the question of shutdown completely, since a WHILE TRUE loop
means “go on for all eternity.” It really means “go on until an uncontrolled
failure like a power-off.” So strictly speaking, it is an invalid code design. What
it really means is “the output of this code will cease to matter before hardware
failure causes its behavior to become undefined.” In many simple embedded uses
this is OK, as long as everyone is aware of it. In the focused hardware design
case, there will actually have to be some work done beyond this pseudocode to
make sure the FIFO quits gracefully.

The code, as we have noted above, implies that there are data buffers but
no valid packet data at startup. However, there are other things to note. In
both programs, n is defined but the external channels are not. This would
normally mean they are passed in by a PROC definition embracing all the
code, or by nested PARs. The reason the outer code has to be PARs is that
this code has to be the last to be executed in its sequence, if there is a sequence.
Otherwise the WHILE TRUE, which never terminates, will make the following
code inaccessible and definitely incorrect. What this means is that the FIFO is
outermost with respect to Deep nesting, which is just what you would expect,
since it is hardware or emulates hardware.

Given this PAR structure embracing our FIFO code, with in and out
declared in some outdented high place, another interesting possibility follows.
The kind of thing shown in Table 3.1 of Chapter 3 is possible, with the clients
using the FIFO. Since it outlives these clients, there is nothing in the WHILE
TRUE loop to stop its being nonempty between clients. This is a consequence
of a lack of proper shutdown that is an actual problem using buffered IO such
as serial. If a running program is deaf to the keyboard buffer, for example, you
can actually type in another command during its run, and that will flash on
the screen and be executed right after the old program ends.

When doing data-flow (higher level) pseudocode, it will pay to consider
shutdown. In occam, a Boolean “notdone” variable may be turned off by
anything capable of interrupting the program, which not only loops on WHILE
notdone, but all significant actions are enclosed by an IF test checking this
variable. Then you actually have to design to the time pad offered by your
Uninterruptible Power Supply (UPS) and provide a graceful shutdown at each
point.
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4.3. Data-flow pseudocoding of the orchard sensor system

4.3 Data-flow pseudocoding of the orchard sensor
system

Careful examination of the orchard sensor design in Chapter 2 leads to the
following initial try at the pseudocode for the “generic” sensor system.

4.3.1 Naive first attempt at generic sensor

In Table 4.6, the new concept of CHAN OF EVENT corresponds to the Transputer
event pin, mentioned in [4] under “5.4 Peripheral interfacing.” It is an edge-
activated interrupt, modeled on the input side as an occam channel. Its utility to
pseudocode comes from examining the behavior of an edge-activated interrupt,
looking at the output side too.

The output side of an edge-activated interrupt is a PORT, an output with
no acknowledge, which therefore cannot block a process. Usually, in embedded
coding, this is represented by a mere write to a memory-mapped bit. In Wide
pseudocoding we want to treat both output and input as a single entity, as it
is in embedded coding using interrupts: one wire, with possible driver coding
to mitigate “keyboard bounce.” Therefore the input side of a CHAN OF EVENT
is defined to be like a CHAN OF BOOL, a single-bit input of the “after” state
which is as close as we can get to a no-bit input, and which will also suffice
if our hardware happens to fire on both transitions. However, it generates no
ACK. The output side of a CHAN OF EVENT is defined to be a PORT OF BOOL.
Thus, input blocks but output does not, and communication is uncertain—the
exact behavior of a standard embedded interrupt.

Table 4.6’s first hack at the pseudocode does not reflect this uncertainty.
But it shows the behavior of the sensor systems, except for the leaf sensors (the
sensors that do not have branches below them). Each mid-sensor has a single
connection to a master (uin and uout) and two connections to slaves (in[k]
and out[k]). Remember that a separate channel has to be declared for each
direction, like a machine in Connel. This is part of the design of a Bluetooth
scatternet, where each low-energy Bluetooth node supports a piconet with at
most three other nodes.

In addition, there is a per-slave return packet count inlen and a wait
between slave triggerings wait. Referring back to Chapter 2 reveals that for
level 1 mid-sensors (the ones connecting directly to leaves), inlen equals 1
and wait equals 1 minute 45 seconds, while for level 2 mid-sensors (the ones
connecting directly to mission control), inlen equals 3 and wait equals 6
minutes 30 seconds.
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-- This is a first attempt at the "mid" PROC pseudocode of the orchard
-- sensors. It uses CHAN OF EVENT which is a PORT OF BOOL on the
-- sending side and a rising-edge event on the receiving side.
PROC mid(CHAN OF EVENT uin, [2]CHAN OF EVENT out, CHAN OF PACKET uout,

[2]CHAN OF PACKET in, VAL INT inlen, wait)
TIMER clock :
PORT OF EVENTS get : -- this represents triggering the sensors
PORT OF PACKET back : -- this represents reading the sensors
BOOL trigger :
[7]PACKET dta :
INT time :
SEQ
out[0] ! FALSE -- set up for events transmitted to children
out[1] ! FALSE
WHILE TRUE
SEQ
-- waits here until parent wakes up with a trigger event
uin ? trigger -- rising edge signal wakes up
clock ? time -- register current time
out[0] ! TRUE -- trigger first child immediately
get ! TRUE -- tell the sensors to register
SEQ i FROM 0 FOR inlen -- get data from 1st child
in[0] ? dta[i]

out[0] ! FALSE -- reset the event line
time := time PLUS wait -- define a sleep
-- waits here until defined time after incoming trigger
clock ? AFTER time
out[1] ! TRUE -- trigger second child after wait
PAR
SEQ i FROM inlen FOR inlen -- get data from 2nd child
in[1] ? dta[i]

back ? dta[2*inlen] -- get the local data from sensors
out[1] ! FALSE -- reset the event line
time := time PLUS wait -- define a sleep
-- waits here until 2 * defined time after incoming trigger
clock ? AFTER time
SEQ i FROM 0 FOR (2*inlen + 1)
uout ! dta[i]

:
}}}

Table 4.6: Initial hack at PROC mid (irrelevant comments removed)

122



4.3. Data-flow pseudocoding of the orchard sensor system

The PORT OF EVENTS is a minor innovation. The plural on EVENTS denotes
vagueness, a pseudocode-only construct, and as mentioned above, PORT denotes
no blocking. In the case of get, the pseudocode is referring to activating
the sensors, so the single line of pseudocode is shorthand for “start taking
temperature, start taking humidity, start whatever.” Note that all PORT-type
actions are given time before results (e.g. back) are expected, and this includes
the CHAN OF EVENT output, which is really a PORT, and waits past a response
before resetting.

The structure of Table 4.6’s mid code now becomes clear. Its setup code
consists merely in putting both its output event lines in the reset state, ready
to communicate.

Each time around the loop, a trigger on uin is communicated by the master
to wake the sensor up. (It should be in low-energy sleep mode until this trigger
comes.) The sensor system notes the time at wakeup, wakes up its first slave,
then commands its sensor array to take data. That is probably a complex
action, merely symbolized by one pseudocode command, but should take little
time. What does take time is the sequence of inlen packet communications
from the awakened slave. Note that significant time may elapse before the first
such communication. Presumably this sensor is in a reasonably efficient sleep
state while waiting.

Having picked up the correct, fixed number of packets from the first slave,
the sensor now goes to sleep in such a way that it awakes time wait after its
master-triggered awakening. Notice that the actual time asleep after the last
packet was received may be much less than wait. Then it performs the same
actions for the second slave as it did for the first, with one exception. It has
to pick up data from its own local sensors. There has been plenty of time for
them to register. Since no resources are shared between this data pickup (using
back) and the input from the slave, these can (at least in principle) be done
simultaneously, by a PAR.

After a second exact wait, the mid-sensor performs its last duty. It pumps
out the packets of information from both slaves and its own local sensors to its
master. In the case of a level 1 mid-sensor, that master is a level 2 mid-sensor,
while in the case of a level 2 mid-sensor, that master is mission control.

The final thing this code does is loop to the WHILE TRUE and block at the
uin ? trigger instruction, awaiting the next trigger from the master.

4.3.2 Naive parallel nesting, mission control, and leaf

Now we can continue with leaf and mission control, and then show the full
PAR structure of the naive orchard sensor array.
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-- This is an initial hack at the 21-sensor orchard system described
-- in the Crawl Space book.
... PROC mid(CHAN OF EVENT uin, [2]CHAN OF EVENT out, CHAN OF PACKET uout,
... PROC leaf(CHAN OF EVENT uin, CHAN OF PACKET uout, VAL INT getwait, wait)
... PROC MC([3]CHAN OF EVENT out, [3]CHAN OF PACKET in, VAL INT inlen, wait)
... main program with local resources
}}}

Table 4.7: Structure of full orchard hack (irrelevant comments removed)

In the pseudocode file of Table 4.7, the fold labeled PROC mid. . . is
Table 4.6. The leaf is essentially mid without the slave communications, and
the mission control (MC) lacks the master communications, and replaces the
trigger with a timed start, and the output with a (missing) hourly.output
routine. (The period in an occam name is just another letter, like underscore
in C, not like period in C.)

Here, there is a special short wait getwait, defined so that the full wait
wait is enough both to register the sensor values, and to copy the sensor values
into the packet. In the call we will set getwait to 30 seconds and wait to 45
seconds, thus leaving 15 seconds to copy and convert all data in the sensors.

The main assumption here is that hourly.output takes less time than
that imposed by wait, which in the call is 20 minutes. In real life, there will
be many outputs of one sort or another, and in this crude pseudocode their
channels are not shown (i.e. they are assumed to be in global variables accessed
by hourly.output). This is OK as a first approximation when the output
is handled by standard OS features like file system and internet. For a full
hour allowance, it would make sense to transmit dta to a dedicated outputter
running in parallel.

Here a major and very friendly feature of occam is used in pseudocode.
In occam, in multidimensional arrays, an index to the left is coarser, but the
indices are placed to the left of the type in declaration and to the right of the
name in use. As counterintuitive as this seems, it makes it possible to gather
one or more right indices onto the type and decree that a compound type, and
causes it to make sense. For example,

[3][2][2]CHAN OF EVENT to0 :

can be considered equivalent to

[3]TYPE2DCHAN to0 :

where TYPE2DCHAN is equivalent to [2][2]CHAN OF EVENT, and thus to0[1]
is equivalent to the collection of to0[1][j][i] for all i and j. This works
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{{{ PROC leaf(CHAN OF EVENT uin, CHAN OF PACKET uout, VAL INT getwait, wait)
-- This is a first attempt at the "leaf" PROC pseudocode of the
-- orchard sensors. It is like MIDhack except that it is missing the
-- communication with slaves.
PROC leaf(CHAN OF EVENT uin, CHAN OF PACKET uout, VAL INT getwait, wait)

TIMER clock :
PORT OF EVENTS get : -- this represents triggering the sensors
PORT OF PACKET back : -- this represents reading the sensors
BOOL trigger :
PACKET dta :
INT time, timeget :
SEQ

WHILE TRUE
SEQ

-- waits here until parent wakes up with a trigger event
uin ? trigger -- rising edge signal wakes up
clock ? time -- register current time
get ! TRUE -- tell the sensors to register
timeget := time PLUS getwait -- define a sleep for sensors
-- waits here until defined gettime after incoming trigger
clock ? AFTER timeget
back ? dta -- get the local data from sensors
time := time PLUS wait -- define a sleep for output
-- waits here until defined time after incoming trigger
clock ? AFTER time
uout ! dta

:
}}}

Table 4.8: Leaf hack

perfectly in all the parameter specifications.

4.3.3 Startup, failure, and reconnect

In a perfect world, this first hack would be almost enough. It lacks one essential
component: the “over the air” addressing that Bluetooth will require. If the
links were wires connected to different pins, the arrays of channels would suffice
to describe them. But they use a shared resource and distinguish signals with
a hidden frequency-hopping mechanism that requires the master to address
the slave.

Another, tougher problem comes from the finite lifetime of the parts. A
serious design, especially one that is expandable in principle, needs a means of
dealing with the fact that the sensors will burn out unpredictably, like light
bulbs. This failure may happen conveniently by a node going silent between
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{{{ PROC MC([3]CHAN OF EVENT out, [3]CHAN OF PACKET in, VAL INT inlen, wait)
-- This is a first attempt at the "mission control" PROC pseudocode of
-- the orchard sensors. It loops through three level-2 mid-sensors and
-- their slaves, and then calls hourly.output on the data.
PROC MC([3]CHAN OF EVENT out, [3]CHAN OF PACKET in, VAL INT inlen, wait)

TIMER clock :
PORT OF EVENTS get : -- this represents triggering the sensors
PORT OF PACKET back : -- this represents reading the sensors
BOOL trigger :
[21]PACKET dta :
INT time :
SEQ

out[0] ! FALSE -- set up for events transmitted to children
out[1] ! FALSE
out[2] ! FALSE
clock ? time -- register current time
WHILE TRUE

SEQ
-- this part is the gathering of data
SEQ k FROM 0 FOR 3

SEQ
clock ? AFTER time -- wake at specified time
out[k] ! TRUE -- trigger k-th child immediately
-- a rather long wait may happen before first input
SEQ i FROM (k*inlen) FOR inlen -- get data from k-th child

in[k] ? dta[i]
out[k] ! FALSE -- reset the k-th trigger
time := time PLUS wait -- define next wakeup time

-- this part is the using of the data
-- which is assumed to take less time than "wait" (20 min)
hourly.output(dta) -- do requirements implied by dta

:
}}}

Table 4.9: Naive Mission Control
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{{{ main program with local resources
[3][2][2]CHAN OF EVENT to0 :
[3][2]CHAN OF EVENT to1 :
[3]CHAN OF EVENT to2 :
[3][2][2]CHAN OF PACKET from0 :
[3][2]CHAN OF PACKET from1 :
[3]CHAN OF PACKET from2 :
PAR

MC(to2, from2, 7, 1200)
PAR k FROM 0 FOR 3

PAR
mid(to2[k], to1[k], from2[k], from1[k], 3, 390)
PAR j FROM 0 FOR 2

PAR
mid(to1[k][j], to0[k][j], from1[k][j], from0[k][j], 1, 105)
PAR i FROM 0 FOR 2

leaf(to0[k][j][i], from0[k][j][i], 30, 45)
}}}

Table 4.10: Orchard scatternet via nested PAR

transmissions. Unfortunately, it may also happen by a node going silent in the
middle of a transmission. In the latter case, it has an inconvenient tendency to
“hang” its communication partner.

4.3.3.1 MAC addresses and scatternet setup

Each Bluetooth entity has a world-unique MAC address burned into its hard-
ware, and a master uses the slave’s MAC address when establishing a conver-
sation link with a slave. The slave does not need to know the master’s MAC
address. Each low-energy Bluetooth has three connector link ends, each of
which may communicate either with a master or with a slave. A mid-sensor will
communicate with one master and two slaves; a leaf sensor will communicate
with one master and no slaves; and the mission control will communicate with
three slaves.

Using the information already described, it is therefore easy to see that all
the information needed for a static array is contained in Table 4.11.

There are 22 indices (IND) in the table, 0 for mission control and 1 through
21 for the nodes. The next three numbers (FAD) are “FORTRAN addresses”
describing the branches. I use the term “FORTRAN address” because real
branches are numbered starting from 1 as in the classic FORTRAN language.
Thus, 3 2 1 refers to the third connection coming from root (i.e., mission
control), the second connection coming from level 2 mid-sensor, and the first
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IND /-FAD-\ NC IC MAC DFI
0 0 0 0 3 1 - -
1 1 0 0 2 4 a 6
2 2 0 0 2 6 b 13
3 3 0 0 2 8 c 20
4 1 1 0 2 10 d 2
5 1 2 0 2 12 e 5
6 2 1 0 2 14 f 9
7 2 2 0 2 16 g 12
8 3 1 0 2 18 h 16
9 3 2 0 2 20 i 19

10 1 1 1 0 - j 0
11 1 1 2 0 - k 1
12 1 2 1 0 - l 3
13 1 2 2 0 - m 4
14 2 1 1 0 - n 7
15 2 1 2 0 - o 8
16 2 2 1 0 - p 10
17 2 2 2 0 - q 11
18 3 1 1 0 - r 14
19 3 1 2 0 - s 15
20 3 2 1 0 - t 17
21 3 2 2 0 - u 18

Table 4.11: Width-first node information table

connection coming from level 1 mid-sensor, thus corresponding to the connel
whose channels are from0[2][1][0] and to0[2][1][0], and the level-0 node
at the far end of it. But 1 0 0 refers to the first connection coming from
root, and goes no farther, thus corresponding to the connel whose channels are
from2[0] and to2[0], and the level-2 node at the far end of it. So the FAD
amounts to a routing table from mission control to the node.

The value NC is the number of children of this node, and the value IC is
the index of the first child in this table. The letter under MAC represents a full
MAC address for the Bluetooth connector link end that is pointing toward
its node’s master, if its node has a master. This may be considered to be the
MAC address of the link between this node and its master. Finally, DFI is the
depth-first index of the same node, used by the array dta in the code.

In the orchard, the signals from all the Bluetooth devices overlap, at least
in principle, and require addressing of slave MACs to assemble the scatternet.
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Figure 4.6: Part of orchard nodes and connels

Figure 4.6 displays some of the nodes and connels that are implied by Table 4.11.
Each connel is shown connected to the node on its slave end, because its MAC
is that of the slave, and the master must address that MAC.

Table 4.12 shows the connels in use by each MAC. In case IND = 0, all the
MACs are slave MACs owned by nodes directly connected to mission control.
For the others, the first MAC is the one owned by the current node, and the
others, if any, are slave MACs that it communicates with. The last row of
Table 4.12 is a special broadcast row, needed in startup.

If a node fails, the information in its row in Table 4.12 will suffice to set up
communication using a replacement node. Its first MAC, new and belonging
to the replacement node, is transmitted to the replacement node’s master or
parent, and the other MACs, if any, are transmitted to the replacement node
itself, informing it of the addresses of its children. A compound failure can also
be handled this way, as long as reconstruction information goes to the parent
first.

At the beginning, when all nodes are powered but they do not have the
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IND /-FAD-\ /-MACs\
0 0 0 0 a b c
1 1 0 0 a d e
2 2 0 0 b f g
3 3 0 0 c h i
4 1 1 0 d j k
5 1 2 0 e l m
6 2 1 0 f n o
7 2 2 0 g p q
8 3 1 0 h r s
9 3 2 0 i t u

10 1 1 1 j
11 1 1 2 k
12 1 2 1 l
13 1 2 2 m
14 2 1 1 n
15 2 1 2 o
16 2 2 1 p
17 2 2 2 q
18 3 1 1 r
19 3 1 2 s
20 3 2 1 t
21 3 2 2 u
22 -1 -1 -1 -

Table 4.12: Node and slave MACs for each node

information they need about their children’s addresses, a sequence of Table 4.12
rows can be transmitted. This starts with row 0, which informs the mission
control about the MACs of its three children, so that communication can begin.
Each of the other rows is passed along according to its routing information to
its proper target sensor, except for the last row, which is broadcast (each node
copies it to all its children). The broadcast row causes a state change (from
setup to loop) after which the regular code takes over.

It is worth noticing that this approach can transmit any information to
newly connected nodes, not just their slave addresses. In Transputer networks,
an extremely small network boot capability made it possible even to transmit
all its coding to each newly awakened part. This made the loading of Transputer
networks a very simple process, and eliminated the need for each chip to have
its code burned separately.
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4.3.3.2 Failure-based replacement

If all parts were eternal, this would finish the job. Since it’s not so, we have to
design for failure detection and replacement insertion. We will start with the
latter, which is not so hard a job.

Assuming we know that a failure has happened, and where, and that all
the other sensors can be assumed still to be working, including any descendants
of the failed sensor, the replacement can take place in a three-step process. (A)
Place and power up the replacement sensor. (B) Add the replacement sensor’s
MAC address to Table 4.12 in the correct two places (its row and its parent’s
row). (C) Transmit the replacement sensor’s row to its parent and, if it is not
a leaf, to itself.

Notice that (C) is a single operation because the route of the sensor’s
row always includes its parent. When the parent (which is alive) receives the
new row, it gleans the replacement’s MAC address and is able to initiate
communication with it. If the replacement is not a leaf, the parent transmits
its row to it and the replacement receives its children’s MAC addresses and
initiates communication with them. This process can obviously be extended to
multiple replacements, parent first.

Since the Table 4.12 packets are small, they can be squeezed in right after
the trigger and its immediately following (non-blocking) instructions, before
in[0] ? dta[0] in Table 4.6 and before clock ? AFTER timeget in Table 4.8.
There are at least 45 seconds available here, which should be plenty. It is done
in both cases by a loop spinning on a PRI ALT until Table 4.12 packets (if
any) stop coming. Of course, uin (and out[k]) must change type so that it
can carry these packets as well as the trigger event. Normally it is done by
making each a CHAN OF ANY and then retyping it at need to the informative
spec, but the state machine must be checked to make sure this setup can never
get out of whack. Or an occam variant PROTOCOL can be set up.

The really important thing is the state machine. The way we are doing it,
all replacement packets must be sent immediately after the trigger to any child
needing them, so that the child’s PRI ALT can never allow its own child to
communicate until the replacement packets are done. That probably means
that the possibly time-consuming process of reviving a connection with a child
should wait until after the uout ! dta communication, which in turn means
there should be no more than one replacement packet sent by mission control
per trigger. This makes the 45-second timing race easy, and should not be
a problem, since weeks or months should elapse between sensor failures on
average.
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4.3.3.3 Detection and orderly response to failure

We finally come to the part of the design that is most often ignored or un-
derestimated. This is the response of the system to an unexpected failure. It
must include detection of the failure while avoiding systemic seize-up due to
transmitted state.

The design of Tables 6 through 9 is deliberately friendly to this task.
Each level is activated by a trigger, and then transmits this triggering to its
descendants. So if an ancestor cuts out, they should in principle just wait
patiently. If a sensor cuts out, its immediate parent should in principle be able
to detect this at the point where the child is supposed to be returning data.
That parent in turn should stay on time with its parent, if any, but return a
special packet in place of the normal one expected from the failed child.

The deep-seated state machine problems happen when the failure takes
place in the middle of a communication. If the partner is a PORT (or is sending
an EVENT) this does not matter; it just goes on. But if the partner is executing
a true, handshaken channel communication, it may (in standard occam) seize
up and never continue. As discussed in [5], not even an ALT can prevent this,
because it has already committed to the communication.

In [5], the Transputer solution is explained: special communications that
forcibly time out and return a failure BOOL if the time limit is exceeded. They
reset their communication channel in so doing, and prevent a “hang.” This can
be done both for input and for output, and so all communication partners of
the failing node are insulated from a “hang.” The input is

PROC InputOrFail.t(CHAN OF ANY c, []BYTE message,
TIMER clock, VAL INT thetime,
BOOL aborted)

I will wrap this in a more convenient form, by inverting the Boolean:

PROC InputOrNot.t(CHAN OF ANY c, []BYTE message,
TIMER clock, VAL INT thetime,
BOOL success)

BOOL aborted :
SEQ
InputOrFail.t(c, message, clock, thetime, aborted)
success := NOT aborted

:

Here it must be remembered that all occam arrays have a length (which
would be another formal parameter in C or other languages). Also, occam

132
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PROCs, unlike C void functions, are call-by-reference (unless VAL precedes
the formal type), so that BOOL aborted or BOOL success is actually the value
returned by the PROC. Finally, in the Transputer definition, thetime is an
expiration time, not a delay.

The output is PROC OutputOrFail.t with the same calling sequence, to
which I similarly define a variant PROC OutputOrNot.t.

Finally, it is desirable that an ALT be bulletproofed. Since the enable,
wait, and disable assembly instruction set for a Transputer ALT, like a C
select but unlike the occam ALT expression, does not execute its winning
communication but branches to code that will execute it, it is possible to use
the same techniques as in [6] in this case. For details see [2] section 10.4.2,
and [7]. For simplicity I will add a FAILURE branch to an ALT, e.g.

PRI ALT
bool1 & c1 ? mess1

-- code
-- more channel guards if needed
clock ? AFTER timeout

-- code, e.g. timedout := TRUE
FAILURE

-- code, e.g. notdone := FALSE

If a channel guard, e.g. c1, is selected and hangs, then the equivalent of

InputOrFail.t(c1, mess1, clock, timeout, aborted)

returns aborted with value TRUE, and the FAILURE branch is taken. If none
of the channel guards are selected, then the standard timeout fires. Thus, under
no conditions does this ALT hang.

This horrible hack will probably get the CSP purists after me with knout and
knobkerrie, but it does work. The reason it works is that once an inputting link
channel guard is selected, and before its communication is done, its process’s
address remains in its channel word and can be recovered as in [6]. If the
first, “unsolicited byte” (see [7]) has not been sent, or has not finished coming,
the channel’s branch of the ALT is not ready, and the timer branch wins.
If it has arrived in time, the channel’s branch is ready and wins the ALT,
and a standard unconditional input necessarily follows, which will use the
InputOrFail.t mechanism and branch to FAILURE if it does not finish in time.
Under all conditions, the ALT terminates and the process continues, and it
terminates within time timeout, which is also used as the deadline for the
implied InputOrFail.t.
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Why care what Transputers did to solve this problem? Because the design is
very simple (see [6]) and we can check that whatever mechanism our connel offers
is consistent with its behavior. Basically, it must kill the stuck transmission,
reset its communication device, and continue its process on the side of the
unfailed node.

Examination of the code from Tables 4.6 through 4.9 reveals that the only
potential “hang” points are in the CHAN OF PACKET communications involving
in[k] and uout. No PORT can hang, nor can a CHAN OF EVENT, with its
simple, ACK-free way of firing. Because of this, we will change each CHAN OF
PACKET to a CHAN OF ANY when necessary for the above devices to be made to
work.

Finally, as long as I am cutting a swath with my horrible hacks, I will make
one more extension of occam syntax. The purpose of this extension is mainly
to deal with the tested blocks that arise in situations where C and similar
languages do an early error exit from a loop. To get the same result in occam
you need to check a BOOL like notdone or stillAlive that, when searched
on, reveals all early error places in the code.

I will extend the “boolean &” expression to more general use than just an
ALT guard. (This works because an ALT guard is currently the only place
where an ampersand is used.) Namely, I define

boolean & codeblock

to be shorthand for the voluminous and common

IF
boolean
codeblock

TRUE
SKIP

Here codeblock is any process in occam’s sense: a block of code consisting of
one line (e.g. SEQ, PAR, IF, ALT, statement), possibly preceded by declarations
and definitions (things ending in :), at the current indentation, and then zero
or more dependent lines at greater indentations. Example:

IF
levelind < 2
[3][6]MAC RETYPES [MACbytes FROM 3 FOR 18] :
SEQ k = 0 FOR 2

initialize.connel(MAC[k+1], out[k], in[k])
TRUE
SKIP
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will be represented by

(levelind < 2) & [3][6]MAC RETYPES [MACbytes FROM 3 FOR 18] :
SEQ k = 0 FOR 2
initialize.connel(MAC[k+1], out[k], in[k])

And I will also permit line breaks after &.

4.3.4 The orchard.occ pseudocode

Table 4.13 below is the pseudocode produced according to the above consid-
erations. It is still rough-edged, but shows all the key parts of the necessary
code, both on the mission control and on each sensor station. It is complex
enough to point up the need for a pseudocode compiler to check correctness,
but this does not exist yet.

Two more cross-hardware efforts are now added to the single effort, that of
sensor data handling, seen in the naive pseudocode. Now, before any sensor
data handling, there is setup, which takes place once in the history of the entire
network. In parallel to sensor data handling, there is sensor node failure and
replacement handling, which shares the connels but mostly uses different data
and timing. Each of these uses a careful state machine design which spreads
through all the PROCs.

In Table 4.14, as in all the PROCs, [21]BYTE setupdta is used for setup
and for failure and replacement handling, while PACKET dta[i] is used for
sensor data handling. The direction of data flow for setupdta is out the fan,
from mission control to leaf, because it informs each parent of its and its
children’s MAC addresses. The direction of data flow for dta is inward, toward
mission control, carrying the sensor data. The single exception is that when
a mid node detects a child’s failure, it modifies dta[i] for that child so that
information about the failure flows back to mission control.

-- This is a revised 21-sensor orchard system described in the Crawl
-- Space book. It uses extraordinary link transmissions including ALT
-- FAILURE, and uses conditional process shorthand (boolean &).
... PROC mid(CHAN OF ANY uin, [2]CHAN OF ANY out, CHAN OF ANY uout,
... PROC leaf(CHAN OF ANY uin, CHAN OF ANY uout, VAL INT getwait,
... PROC MC([3]CHAN OF ANY out, [3]CHAN OF ANY in, VAL INT inlen,
... main program with local resources
}}}

Table 4.13: Toplevel view of orchard.occ in origami (top comments removed)
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{{{ PROC mid(CHAN OF ANY uin, [2]CHAN OF ANY out, CHAN OF ANY uout,
PROC mid(CHAN OF ANY uin, [2]CHAN OF ANY out, CHAN OF ANY uout,

[2]CHAN OF ANY in, VAL INT levelind, inlen, chwait, totwait, shortwait)
-- uin, out[k] is [21]BYTE until broadcast (setup)
-- but in loop is EVENT; (0 or more times [21]BYTE)
-- where the [21]BYTE setupdta’s are immediate and
-- continue until a in[0] child trigger comes
-- uout is [2*inlen+1]PACKET
-- in[k] is [inlen]PACKET
-- NOTE: levelind is always < 2 in mid, always = 2 in leaf.
TIMER clock :
PORT OF EVENTS get : -- this represents triggering the sensors
PORT OF PACKET back : -- this represents reading the sensors
[2]BOOL upch : -- is child connel currently working?
[7]PACKET dta :
INT time, t1, t4 :
-- The following variables are dedicated to failures and restarts
[21]BYTE setupdta : -- BYTE is equivalent to unsigned char
[3][6]BYTE MAC :
PACKET errordta IS ERRORDTA : -- some special error values for dta
INT t2 :
SEQ

... setup
WHILE TRUE

INT indexdown : -- in case a replacement is moving below
[21]BYTE wassetupdta :
BOOL notdone : -- pseudocode test of hardware failure
[2]BOOL wasupch :
SEQ

-- When you come BACK to here, this sensor has failed and a
-- new one was installed. Notice that the code can never
-- detect this (no place in the code sets notdone to FALSE).
-- The "notdone := FALSE" is implicitly done by hardware.
-- The replacement sensor must not look for a full setup (with
-- broadcast at end), but must start here.
(PORT out[0]) ! FALSE -- set up for events transmitted to children
(PORT out[1]) ! FALSE
notdone := TRUE
indexdown := -1
wasupch := upch
WHILE notdone

INT wasindexdown : -- in case a replacement came last time
BOOL trigger, upparent :
... loop on each trigger from parent

:
}}}

Table 4.14: Pseudocoding for mid sensor PROC
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{{{ setup
uin ? setupdta
WHILE setupdta[0] <> (BYTE 255)

SEQ
IF

setupdta[levelind+1] = 0(BYTE)
-- setupdta has reached its destination
SEQ

[18]BYTE MACbytes RETYPES MAC :
MACbytes := [setupdta FROM 3 FOR 18] -- record MAC addrs
SEQ k = 0 FOR 2

SEQ
initialize.connel(MAC[k+1], out[k], in[k])
upch[k] := TRUE -- communicating with children

TRUE
-- pass the setupdta along its route
out[(INT setupdta[levelind+1]) - 1] ! setupdta -- handshaken data

uin ? setupdta
-- final setupdta packet is broadcast
SEQ k = 0 FOR 2

out[k] ! setupdta
}}}

Table 4.15: Mid sensor setup

setupdta and dta use different node ordering schemes, one width-first and
the other depth-first.

Because out[i] is now a CHAN OF ANY with a dual function of outputting
EVENT and setupdta, the notation (PORT out[i]) is used when a non-
blocking Boolean PORT output is used to cause the EVENT. Booleans
upparent and upch[i] (meaning “upchild”) are used to show whether the
connection to parent or child respectively is still alive. Since the parent is the
timing master, upparent is local to a single loop on the trigger. After failure,
code will restart at the top of the WHILE TRUE (without a new setup) and
proceed to the uin ? trigger input EVENT, at which time both this node
and its connector link to its parent will be functional.

Each child Boolean upch[i] is by contrast a global. A dead child connection
does not cause this mid sensor to stop looping, but does cause failure notification
to ride back toward mission control. Each child has an independent Boolean,
allowing for partially functioning network subtrees.

Table 4.15 shows the standard setup procedure, which is in the width-
first order implied by Tables 4.11 and 4.12. This permits each mid node to
come alive with its children’s MAC address information before waking up the
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{{{ loop on each trigger from parent
SEQ

-- waits here until parent wakes up with a trigger event
upparent := TRUE -- communicating with parent
uin ? trigger -- rising edge signal wakes up
clock ? time -- register current time
t1 := time PLUS shortwait
t2 := time PLUS (chwait MINUS shortwait)
t4 := time PLUS (totwait MINUS shortwait)
(PORT out[0]) ! TRUE -- trigger first child immediately
get ! TRUE -- tell the sensors to register
-- At most one setupdta is sent per full cycle. Usually
-- none is sent, but one may arrive at any time, dealing
-- with replacements in this node’s dependent tree.
... setupdta (t1), then input first child (t2)
(PORT out[0]) ! FALSE -- reset the event line
... if still running, input 2nd child (t2) || sensor data
... if still running, output to parent
... if child just replaced, connect to new MAC

}}}

Table 4.16: Mid sensor loop pseudocode

connel to each child via initialize.connel. At the end, a special setupdta
is broadcast to all nodes, carrying the information that setup is done and the
other two efforts are to begin.

The loop code of Table 4.16 is the most complex, since it is interleaved of
two simultaneously running state machines: the sensor data handling effort
and the sensor failure and replacement effort. The latter, though essential, is
rarely operational, but bulks up to more than half of the pseudocode.

This loop code spends most of its time asleep, awaiting an EVENT from its
parent at uin ? trigger. It spends on the order of a microsecond doing time
read and timeout calculation, then passes the EVENT onto its first child. The
timeout calculations cause sensor data return to fit Figure 2.3 of Chapter 2,
but replacement setupdta packets are also slipped in there if necessary, at
most one to a loop.

The failure and replacement effort runs almost independently of the data
handling effort. With a lot of extra local channels, a design effort beyond the
scope of this book might have created a pseudocode PAR for these two efforts.
This is most appropriate for chip and board design where independent areas of
silicon are to be used. In our case here, the flows are kept separate by careful
state machine design. As is typical of state machine pseudocode, the Booleans
used in it will probably actually appear in the final C code.
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{{{ setupdta (t1), then input first child (t2)
IF
indexdown = 0
upch[0] & OutputOrNot.t(out[0], setupdta, clock,
t1, upch[0])

indexdown > 0
wassetupdta := setupdta

TRUE
SKIP

wasindexdown := indexdown
indexdown := -1
PRI ALT
uin ? setupdta -- communicating with parent at this point
SEQ
indexdown := (INT setupdta[levelind+1]) - 1
-- Has this arrived? Then store local data and speak to children
(indexdown < 0) & SEQ
deal.with.local.restart(levelind, setupdta, MAC, in, out)
(PORT out[0]) ! TRUE

clock ? AFTER t1 -- usual case
SKIP

FAILURE
upparent := FALSE

-- 1st child data: possibly wait quite a while for this
upch[0] & InputOrNot.t(in[0], [dta FROM 0 FOR inlen], clock,

t2, upch[0])
}}}

Table 4.17

In Table 4.17, all but the last (upch[0] &) code line is replacement code.
This replacement code takes place as soon as possible after trigger. It deals with
an overlap of the replacement state machine. First, if the LAST loop brought
in a replacement for child 0 or below, it transmits that. Then it remembers
that last replacement setupdta as wassetupdta in case it’s needed for child 1,
and brings in a CURRENT loop setupdta if available. Each communication
is hang-tested.

It could be that the incoming setupdta is destined for this node and is
not to be passed on, in which case deal.with.local.restart is called. Its
block re-imposes (PORT out[0]) ! TRUE after what is assumed to be a quick
re-connect with the already live slave.

The usual case for all that code is to do nothing, and after a comparatively
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{{{ if still running, input 2nd child (t2) || sensor data
SEQ
time := time PLUS chwait -- define a sleep
t1 := t1 PLUS chwait -- same function as before
t2 := t2 PLUS chwait -- same function as before
-- waits here until chwait after incoming trigger
clock ? AFTER time
(PORT out[1]) ! TRUE -- trigger second child after chwait
((wasindexdown = 1) AND upch[1]) & OutputOrNot.t(out[1],
wassetupdta, clock, t1, upch[1])

-- second child data and local data
PAR
upch[1] & InputOrNot.t(in[1],

[dta FROM inlen FOR inlen], clock, t2, upch[1])
back ? dta[2*inlen] -- get the local data from sensors

(PORT out[1]) ! FALSE -- reset the event line
}}}

Table 4.18

long wait, a data handling packet to come up from child 0. It will contain data
from that child’s whole subtree.

The code of Table 4.18 does much the same as the last, but for child 1. It
uses the wrapped-over wassetupdta if necessary to send replacement data to
that subtree. Its main job is, after a wait, to bring up a data handling packet
from child 1’s subtree. It does this in parallel to grabbing its own local sensor
data. (Since C does not have a PAR, the coder will have to hand-code this
behavior. The main thing is not to spend any extra time bringing in the local
sensor data, but to fit it in the waits imposed by the child transmission.)

Table 4.19 starts by detecting child error, and marking the dta[i] belonging
to that child with errordta. Then it sleeps till the proper time, and if the
parent connel is working, it sends all of its tree’s sensor data to its parent.

Finally, special code (Table 4.20) can happen once the timed data trans-
mission to the parent is over with. This operates on replacement activation
being parent-first. That means that if a child is down and a replacement
comes, it must have the correct MAC address for the replacement for that
child, and thus initialize.connel is called to reconnect to the child. That
setupdta will later be copied on the new connection on the next loop, as
the failure and replacement effort wraps around. This arrangement is because
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{{{ if still running, output to parent
SEQ
(wasupch[0] AND (NOT upch[0])) & dta[inlen-1] = errordta
(wasupch[1] AND (NOT upch[1])) & dta[(2*inlen)-1] = errordta
wasupch := upch
time := time PLUS chwait -- define a sleep
-- waits here until 2 * chwait after incoming trigger
clock ? AFTER time
upparent & OutputOrNot.t(uout,

[dta FROM 0 FOR (2*inlen+1)], clock, t4, upparent)
}}}

Table 4.19

{{{ if child just replaced, connect to new MAC
((indexdown >= 0) AND (NOT upch[indexdown])) & SEQ

MAC[indexdown+1] := [setupdta FROM 3 FOR 6]
initialize.connel(MAC[indexdown+1], out[indexdown],

in[indexdown])
upch[indexdown] := TRUE

}}}

Table 4.20

initialize.connel may take awhile in Bluetooth.
It is true that the failure could have been more recent than the one that

triggered a replacement and its setupdta. In that rare case, this node will fail
again, and the parent will send yet another notification to mission control.

Table 4.21 is the leaf pseudocode. It is a lot like the mid code, except it
does not have to worry about children.

The setup (Table 4.22) is much simpler than that in the mid code. We
could have gotten by with no setup at all, since the leaf is a Bluetooth slave
only, but I’m passing some information in here in case an inquiry function is
later instituted. The broadcast packet, too, terminates here.

The main job of the loop (Table 4.23) is to get data from its local sensors.
But a replacement packet could be sent here, for the inquiry reason I just
mentioned.

Table 4.24 waits till exactly timeget in all cases. Rarely, it may get a
replacement packet, but mostly it does nothing.
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{{{ PROC leaf(CHAN OF ANY uin, CHAN OF ANY uout, VAL INT getwait,
PROC leaf(CHAN OF ANY uin, CHAN OF ANY uout, VAL INT getwait,

outwait, totwait, shortwait)
-- uin is [21]BYTE until broadcast (setup)
-- but in loop is EVENT; (0 or more times [21]BYTE)
-- where the [21]BYTE setupdta’s are immediate and
-- continue until wait is done
-- uout is EVENT; PACKET
TIMER clock :
PORT OF EVENTS get : -- this represents triggering the sensors
PORT OF PACKET back : -- this represents reading the sensors
BOOL notdone :
PACKET dta :
INT time, t4 :
-- The following variables are dedicated to failures and restarts
-- and sensor waits
[21]BYTE setupdta : -- BYTE is equivalent to unsigned char
[3][6]BYTE MAC :
INT timeget :
SEQ
... setup
WHILE TRUE
BOOL notdone : -- pseudocode test of hardware failure
SEQ
-- When you come BACK to here, this sensor has failed and a
-- new one was installed. Notice that the code can never
-- detect this (no place in the code sets notdone to FALSE).
-- The "notdone := FALSE" is implicitly done by hardware.
-- The replacement sensor must not look for a full setup (with
-- broadcast at end), but must start here.
notdone := TRUE
WHILE notdone
BOOL trigger, upparent :
... loop on each trigger from parent

:
}}}

Table 4.21: Pseudocoding for leaf sensor PROC
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{{{ setup
uin ? setupdta
WHILE setupdta[0] <> (BYTE 255)

SEQ
[18]BYTE MACbytes RETYPES MAC :
MACbytes := [setupdta FROM 3 FOR 18] -- record MAC addrs
uin ? setupdta

-- final setupdta packet is broadcast
}}}

Table 4.22: Leaf sensor setup

{{{ loop on each trigger from parent
SEQ
upparent := TRUE
-- waits here until parent wakes up with a trigger event
uin ? trigger -- rising edge signal wakes up
clock ? time -- register current time
t4 := time PLUS (totwait MINUS shortwait)
get ! TRUE -- tell the sensors to register
timeget := time PLUS getwait -- define a sleep for sensors
... deal with at most one setupdta before timeget
... if still running, get sensor data and output it (t4)

}}}

Table 4.23: Leaf sensor loop pseudocode

{{{ deal with at most one setupdta before timeget
PRI ALT
uin ? setupdta

SEQ
deal.with.leaf.restart(setupdta, MAC)
clock ? AFTER timeget

clock ? AFTER timeget
SKIP

FAILURE
upparent := FALSE

}}}

Table 4.24
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{{{ if still running, get sensor data and output it (t4)
SEQ
back ? dta -- get the local data from sensors
time := time PLUS outwait -- define a sleep for output
-- waits here until defined time after incoming trigger
clock ? AFTER time
upparent & OutputOrNot.t(uout, dta, clock, t4, upparent)

}}}

Table 4.25

In Table 4.25 we grab the local sensor data and, at the proper time, send
it to the parent.

Table 4.26 is mission control. Of course, I have left out much of the complex-
ity on the output side, which is probably more typical UI code on an OS-based
system.

Table 4.27 reads the setup data in (see Table 4.12) and, after bringing up
the near connels for the first time, is passed out into the sensor fan. Then a
broadcast is sent out along each branch. A Boolean failed[i] is set up to
maintain information about the state of every node.

Triggering by this master (Table 4.28) is based on a timer. Sometimes, a
replacement packet needs to be sent out too. Normally, a long set of dta[i]
packets is received from a direct child after a rather long wait. Failure results
in this child (one directly connected to mission control) being marked as failed.

We have reserved updwait time for the full output and failure handling for
this Table 4.29 loop. update.failures checks whether any descendants farther
out the fan have been reported failed. hourly.output does normal output.
one.replacement is NOT caused to fire by a failure, but by (unspecified) user
input, telling it that a sensor has been replaced, and what its new MAC address
is. If that replaced sensor is a direct child, initialize.connel happens here.

In general, most of the effort needed to manage the output can be offloaded
to a process running in parallel to mission control. That makes it realistic that
the output and failure handling can be done within so little time. In this case,
further design can be done via pseudocode if necessary.

Table 4.30 is the program, not the PROC. Each member represents a
different piece of hardware. Notice there is no SEQ, even though we consider
the possibility a sensor may be replaced. The replacement sensors are activated
by returning to the WHILE TRUE (not the setup) in their PROCs and awaiting
the first EVENT.
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{{{ PROC MC([3]CHAN OF ANY out, [3]CHAN OF ANY in, VAL INT inlen,
-- This is a second attempt at the "mission control" PROC pseudocode of
-- the orchard sensors. It loops through three level-2 mid-sensors and
-- their slaves, and then calls hourly.output on the data.
PROC MC([3]CHAN OF ANY out, [3]CHAN OF ANY in, VAL INT inlen,
chwait, updwait, shortwait)
-- out[k] is [21]BYTE until broadcast (setup)
-- but in loop is EVENT; (0 or more times [21]BYTE)
-- where the [21]BYTE setupdta’s are immediate and
-- continue until a in[0] child trigger comes
-- in[k] is [inlen]PACKET
TIMER clock :
[21]PACKET dta :
[3]BOOL upch : -- is child connel currently working?
INT time, t2 :
-- The following variables are dedicated to failures and restarts
[23][21]BYTE setupdta :
[22]BOOL failed :
INT replace.index, replace.k :
INT t1 :
SEQ

... setup and get everything to talk
SEQ k FROM 0 FOR 3

(PORT out[k]) ! FALSE -- set up for events transmitted to children
WHILE TRUE

SEQ
-- this part is the gathering of data
SEQ k FROM 0 FOR 3
... trigger child and deal with child’s response

... output and analyze results from whole orchard
:
}}}

Table 4.26: Pseudocoding for mission control PROC
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{{{ setup and get everything to talk
fill.in.setupdta(setupdta) -- as in Ch 4 Table 12: real MAC addresses
SEQ k FROM 0 FOR 3

initialize.connel([setupdta[k+1] FROM 3 FOR 6], out[k], in[k])
SEQ i FROM 1 FOR 21
VAL INT k IS (INT setupdta[i][0]) - 1 :
out[k] ! setupdta[i]

SEQ k FROM 0 FOR 3
SEQ
out[k] ! setupdta[22] -- the broadcast end signal
upch[k] := TRUE

replace.index := 0 -- no replacement right after setup
replace.k := -1
SEQ i FROM 0 FOR 22

failed[i] := FALSE
clock ? time -- register current time
}}}

Table 4.27: Mission control setup

The times are given in seconds, not in millionths of a minute as in the first
hack (an error for millionths of a second).

All the pseudocode except for mission control is expected to be coded on
small embedded processors. The principle to follow is that every part of the
pseudocode defines behavior that is mimicked by the real code. Any trick
necessary to do that is OK. In addition, more features may be added to the
real code to aid debugging.

4.4 Data-flow pseudocoding of the satellite CDMA
receiver

The satellite CDMA receiver requires a different set of capabilities from the
orchard sensors. Here, the rate of data flow and calculation is great, and best
design involves a lot of vector programming methods. I will also use this design
to give an example of buffering, because that is a key technique needed to avoid
the “hiccups” so prevalent even in polished commercial software products.

Since the purpose is didactic, the buffering may not be necessitated by
the real behavior of USB. Similarly, the Raspberry Pi (RPi) and Parallella
specifications may be slightly idealized in order to illustrate some points. In
particular, one RPi variant will contain fast analog input ports, a 25MHz
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{{{ trigger child and deal with child’s response
SEQ
clock ? AFTER time -- wake at specified time
t1 := time PLUS shortwait -- for a setupdta
t2 := time PLUS (chwait - updwait) -- enough time for dta
time := time PLUS chwait -- define next wakeup time
(PORT out[k]) ! TRUE -- trigger k-th child immediately
-- act upon one replacement if necessary
(replace.k = k) & SEQ -- upch[k] TRUE if reach here
OutputOrNot.t(out[k], setupdta[replace.index], clock,
t1, upch[k])

-- note: replace.index = k+1 if reaches here
upch[k] & failed[replace.index] = FALSE
replace.index = 0 -- these two are unconditional
replace.k = -1
-- If NOT upch[k], then failed[incoming replace.index]
-- remains TRUE at this point, because replacement then
-- must be retried after immediate child[k] is replaced.

-- A rather long wait may happen before first input.
upch[k] & InputOrNot.t(in[k],
[dta FROM (k*inlen) FOR inlen], clock, t2, upch[k])

(NOT upch[k]) & failed[k+1] := TRUE -- immediate child[k]
(PORT out[k]) ! FALSE -- reset the k-th trigger

}}}

Table 4.28: Mission control child handler

{{{ output and analyze results from whole orchard
-- this part is the using of the data, which is assumed
-- to take less time than "updwait" (<< 7 minutes)
update.failures(dta, failed) -- add to list of failed if needed
hourly.output(dta) -- do requirements implied by dta
-- The following call allows user input of a new MAC address;
-- otherwise returns replace.k < 0
one.replacement(setupdta, replace.index, replace.k)
-- The following fires only if the replacement is directly
-- connected to MC
((replace.k >= 0) AND (replace.index = (replace.k+1))) & SEQ

initialize.connel([setupdta[replace.index] FROM 3 FOR 6],
out[replace.k], in[replace.k])

upch[replace.k] := TRUE
}}}

Table 4.29: Mission control output and replacement pseudocode
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{{{ main program with local resources
[3][2][2]CHAN OF ANY to0 : -- EVENT and [21]BYTE
[3][2]CHAN OF ANY to1 :
[3]CHAN OF ANY to2 :
[3][2][2]CHAN OF ANY from0 : -- PACKETs
[3][2]CHAN OF ANY from1 :
[3]CHAN OF ANY from2 :
PAR

MC(to2, from2, 7, 1200, 180, 15)
PAR k FROM 0 FOR 3
PAR
mid(to2[k], to1[k], from2[k], from1[k], 0, 3, 390, 1200, 15)
PAR j FROM 0 FOR 2
PAR
mid(to1[k][j], to0[k][j], from1[k][j], from0[k][j], 1, 1,
105, 390, 15)

PAR i FROM 0 FOR 2
leaf(to0[k][j][i], from0[k][j][i], 30, 45, 105, 15)

}}}

Table 4.30: Pseudocoding for orchard hardware network

dual-channel ADC, and a TCM arrangement with DMA to a circular buffer.
Finally, I will stick with the original Zac Manchester CDMA algorithm, 640-bit
SLCE.

The interesting thing is that allowing the computer to perform its tasks
as quickly as possible is often the enemy of smoothness of output. Since Deep
Programming usually ignores questions of timing, it falls into this trap by
default. The Wide approach, which easily avoids it as long as there is enough
computing power, is closely analogous with physical flow engineering. Compare
outIQdriver in scatter.occ below.

4.4.1 Copy, move, read and write

Before going into detailed pseudocode for the satellite receiver, it’s necessary
to face the issue of robust zero-copy data moving. This is an issue not faced
by occam, but there are constructions that have the same effect, if you keep
a clear idea of the distinction between a copy and a move. In order to avoid
the abstraction problems of Deep programming, where one loses control of the
entities and bugs creep in, it is also necessary to have a physical analogue in
mind at all times.
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4.4. Data-flow pseudocoding of the satellite CDMA receiver

Figure 4.7: Swap caddy

Look at Figure 4.7. Here is a caddy with two memory modules, one available
to each (square) piece, and it spins 180 degrees, moving each module and its
contents to the other piece.

In Table 4.31 is pseudocode that does the same (repeatedly). For convenience
of comparing them, the two processes are written side by side.

The critical thing about understanding the Swap Caddy is the distinction
between copy and move. Taken literally as written, the inner PAR does a copy
in both directions. This may take a long time if PACKET is big. After it
is done, the second member’s buf[ind] contains the same data as the first
member’s buf[1-ind] but at a different address. Similarly, the first member’s
buf[ind] contains the same data as the second member’s buf[1-ind] but at
a different address.

To show what is really intended, I invoke an obscure rule of occam: Once
part of an array is abbreviated (i.e. IS or RETYPES definitions), the rest of the
array is unavailable to that code block for anything except further abbreviations.
Since I abbreviate only buf[ind] in each member, the innermost SEQ has no
access of any kind to buf[1-ind]. The reason is that the Swap Caddy really
does a move, not a copy. This means that after the communication PAR, the
source of the output (buf[1-ind] in each member) is no longer there. It has
lost its memory module.

If we strictly adhere to this rule of unavailability, then we can re-
place each data communication with a pointer communi-
cation. This is a major saving that can prevent “hiccups” in rapid timed
operations.

After the pointer communications, treated as moves, are done, the second
member’s buf[ind] has the same data and address as the first member’s
buf[1-ind] used to have, but the first member’s buf[1-ind] has no data or
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CHAN OF PACKET left, right :
PAR

-- code for first member -- code for second member
[2]PACKET buf : [2]PACKET buf :
INT ind : INT ind :
SEQ SEQ
ind := 1 ind := 1
WHILE TRUE WHILE TRUE
SEQ SEQ
ind := 1-ind ind := 1-ind
PAR PAR
right ! buf[1-ind] right ? buf[ind]
left ? buf[ind] left ! buf[1-ind]

PACKET a IS buf[ind] : PACKET b IS buf[ind] :
SEQ SEQ
-- do stuff with a -- do stuff with b

Table 4.31: Two processes with swap caddy

address. Similarly, the first member’s buf[ind] has the same data and address
as the second member’s buf[1-ind] used to have, but the second member’s
buf[1-ind] has no data or address. Developing the computer linguistic impli-
cations of this is a big part of the language development some of my colleagues
and I have proposed.

In the meantime, implementing this in C will involve arrays of pointers, but
the correspondence to real packets must be strictly controlled. For instance, it
is a good idea to place an invalid pointer, perhaps a NULL, in the source slot
after every move. This strictly corresponds to the memory module that isn’t
there.

A slight variant on this approach can be used for drivers. The same design
(Figure 4.8) works for read, for write/modify, and for write with no modification
allowed. I call it a flip driver because its driver member, which is identical
with the second member of Table 4.31, flips the role of its two PACKETs after
operating and before the next communication PAR.

Its circular buffer member (Table 4.32) outputs the leading buf[ind] and
inputs the trailing buf[wasind]. If pointer moves are used, it is easily seen
that (except for the one invalid buf[ind]) the actual pointers stay the same
at the same place in the circular array. Thus it amounts to “loaning” a pointer
to the driver and getting it back.
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4.4. Data-flow pseudocoding of the satellite CDMA receiver

Figure 4.8: Flip driver

-- code for first member
[N]PACKET buf :
INT ind :
SEQ
ind := 0
WHILE TRUE
INT wasind :
SEQ

-- do stuff with buf except buf[ind]
wasind := ind -- move 1 notch forward around circular buffer
ind := ind + 1
(ind >= N) & ind := 0
-- if write or write/modify, valid data is in buf[ind]
-- if read, there is space in buf[wasind]
PAR
right ! buf[ind]
left ? buf[wasind]

-- if read or write/modify, new data is in buf[wasind]
-- do stuff with buf except buf[ind]

Table 4.32: Flip driver circular buffer process
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4.4.2 Provisional computational cores

In the orchard sensor case we did two “subwaves”: the naive design, followed
by the design including start and replacement. It similarly makes sense to do
a couple of approaching steps in this high-powered electromagnetic filtering
problem.

Because the flow structure is so simple (almost unidirectional) but the
computing task is challenging, it is advisable to start with provisional pieces
that do the computing. These pieces will have channel formals from which
data flow in and out can be determined, and delays calculated and controlled.
“Glue” can then be designed to fit these needs.

4.4.2.1 CDMA test integral node

At the center, repeated on each of many nodes, each node a Parallella core, is
pseudocode of the form of Table 4.33. Two of these nodes will serve each of
the 182 templates (PRN0 and PRN1 for each of the 91 twist values, spaced
by 72 degrees, and spanning the expected +-2ppm variation in the carrier
frequency caused by crystals at various temperatures). In one of the two, I0
will be a twisted I template and Q0 a twisted Q template, while in the second
(quadrature) node, I0 will be a twisted -Q template and Q0 a twisted I template.

Examination of the code shows it does, as expected, “stamp” the template
on the incoming (I,Q) for 1920 steps starting from an arbitrary step. Since
1919− k equals 1920− (k+ 1), the first stamp after acfirst[1919-k] is set to
zero is the aclast[0] stamp involving I0[0] and Q0[0]. The index of I0 and
Q0 increases by 1 for each succeeding stamp until acfirst is finally output
after 1920 steps. This is the delay: 1920/(192kHz) = 10 milliseconds.

Several of the blocks, especially the replicated SEQ blocks, are equivalent
to and intended to represent efficient core-level vector operations.

The PAR in the setup is a standard swap caddy operation, used because the
process that supplies this twisted test template has to serve up to 62 different
nodes. Also, the way memory is structured on the Parallella is friendly to this
approach. The communication is then notification of ownership.

Another point of interest is the use of 0.0 in I and in the output to mean
reset. If by chance a real 0.0 appears, it is replaced with a very small positive
number that will make no difference in the calculations.

The innermost two replicated SEQs in the WHILE notdone loop are each a
long vector operation on average, a scalar-multiply-accumulate (MAC) pair.
Given vector-friendly indexing, the first, after setup, should consume 4j cycles
and the second 7680-4j cycles, thus totalling 7680 cycles. The overhead of the
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4.4. Data-flow pseudocoding of the satellite CDMA receiver

PROC CDMAtest(CHAN OF REAL32; REAL32 inIQ, CHAN OF REAL32 outmatch,
CHAN OF [1920]REAL32; [1920]REAL32 inIQ0, outIQ0)
[2][1920]REAL32 I0b, Q0b : -- may be -Q0, I0 for quadrature test
[1920]REAL32 ac : -- accumulator
REAL32 I, Q :
SEQ
WHILE TRUE
BOOL notdone :
SEQ

-- setup (the PARs denote caddy swaps)
PAR
inIQ0 ? I0b[1]; Q0b[1]
outIQ0 ! I0b[0]; Q0b[0] -- lend IQ0 to crystal.occ

PAR
inIQ0 ? I0b[0]; Q0b[0] -- return IQ0 from crystal.occ
outIQ0 ! I0b[1]; Q0b[1]

SEQ i FROM 0 FOR 1920
ac[i] := 0.0(REAL32)

notdone := TRUE
-- loop
VAL [1920]REAL32 I0 IS I0b[0] : -- write unchangeable
VAL [1920]REAL32 Q0 IS Q0b[0] :
WHILE notdone
SEQ j FROM 0 FOR 1920
[]REAL32 acfirst IS [ac FROM 0 FOR (1920-j)] :
[]REAL32 aclast IS [ac FROM (1920-j) FOR j] :
VAL []REAL32 I0first IS [I0 FROM 0 FOR j] :
VAL []REAL32 I0last IS [I0 FROM j FOR (1920-j)] :
VAL []REAL32 Q0first IS [Q0 FROM 0 FOR j] :
VAL []REAL32 Q0last IS [Q0 FROM j FOR (1920-j)] :
notdone & SEQ
inIQ ? I; Q
(I = 0.0(REAL32)) & notdone := FALSE
SEQ i FROM 0 FOR j
aclast[i] := (aclast[i] + I*I0first[i]) + Q*Q0first[i]

SEQ i FROM 0 FOR (1920-j)
acfirst[i] := (acfirst[i] + I*I0last[i]) + Q*Q0last[i]

notdone & REAL32 theoutput IS acfirst[1919-j] :
SEQ
(theoutput = 0.0) & theoutput := 1.1755E-38(REAL32)
outmatch ! theoutput -- never outputs 0.0 here

acfirst[1919-j] := 0.0
outmatch ! 0.0(REAL32) -- end signal

:

Table 4.33: Provisional CDMA test integral node
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loop should be around 20 more cycles, not counting waits for communication,
totalling under 1.479 billion cycles per second, within a Parallella node’s
capability. Assuming readiness to transmit and receive, the communications,
which are independent, can be moved around the loop so they have at least 8
cycles to complete before their space or data is needed. If that is not adequate,
some NOPs can be added; over 100 cycles per step are available within the
1.5GHz limit.

You may ask why the two innermost replicated SEQs in the loop are not
placed in a PAR, thus saving around 25% clock time. Such a PAR would
actually be quite legal since none of the written-to abbreviations overlap.

The answer is that this is unrealistic given the target processor, which is
a single core of the 64-core Parallella. It has a limited capacity to do MACs
(one per two cycles), and not in parallel. Pseudocoding should be adapted to
the target processor, identified in the First Wave, but should have structure
simple enough so that it can be enhanced if a differently optimized processor
comes along. To attempt to optimize for all processors at once is a kind of
abstraction and should usually be avoided. (The replicated SEQs themselves
are adapted for a vector processor, and could be expressed differently for a
core with high internal parallelism.)

4.4.2.2 IF demodulator and filter

Another major computational node is the Intermediate Frequency demodulator
and filter. It was described in some detail in the First Wave, and will be fleshed
out here.

The IF data is analog and produced by an analog demodulator. Because of
the wide range of possible effective carrier frequencies, due to Doppler even
more than to the temperature inaccuracy of the crystal, we need to be flexible
about the waveforms getting the IF to baseband. Since we are operating at
25MHz, a cycle of 5000 data points will repeat every 200 microseconds, and by
choosing the IF-to-baseband demodulator frequency to be a multiple of 5kHz,
we can get baseband carrier rotation to between -5kHz and +5kHz. Given
knowledge of the expected Doppler, that can be added to the twist frequencies
presented to the CDMA nodes, and absolute twist remain under 6kHz, which
should be tractable at the slow sampling of 192kHz.

The feedback channel kill can at any time interrupt the filter’s operations,
and cause it to send out an end signal (in which I is 0.0) to propagate reset to
downstream processes.

The first, one-time setup (Table 4.35) relates to Figure 2.6 of Chapter 2.
There are 24 possibilities (we repeat the one at the end for convenience) for
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PROC filter(CHAN OF INT16; INT16 inIQIF, CHAN OF REAL32; REAL32 outIQ,
CHAN OF [5000]REAL32; [5000]REAL32 inIQ0, outIQ1, CHAN OF EVENT kill)
[2][5000]REAL32 I0b, Q0b : -- to demod the IF to baseband
[25]REAL32 a, b : -- starters for the filter
REAL32 Iac, Qac, Iacback, Qacback : -- accumulators
INT16 I16, Q16 -- incoming IF data
REAL32 I, Q : -- incoming IF data
REAL32 IBraw, QBraw : -- after raw demod
INT abind : -- stepping 5 of 24
INT nsteps : -- either 129 or 130
INT inddemod, ind :
SEQ

... setup
-- loop
WHILE TRUE

BOOL notdone, down :
SEQ

... setup new demod
VAL [5000]REAL32 I0 IS I0b[ind] : -- write unchangeable swap caddy
VAL [5000]REAL32 Q0 IS Q0b[ind] :
WHILE notdone

REAL32 aj, ajm1, ajm2, bj, cj :
SEQ

... input, demod, and handle inddemod

... hat node accumulate excluding end signal

... prepare for next hat node
SEQ i FROM 0 FOR nsteps

notdone & SEQ
... input, demod, and handle inddemod
... standard accumulate

outIQ ! 0.0(REAL32); 0.0(REAL32) -- end signal
:

Table 4.34: Low pass filter, 25MHz to 192kHz

{{{ setup
-- hat spacing of 3125/24, slope 24/3125 = 0.00768
SEQ i FROM 0 FOR 25

SEQ
a[i] := (REAL32 i*i)/150000.0
b[i] := 0.00384 + 0.00032*(REAL32 i)

ind := 1 -- swap caddy index
}}}

Table 4.35: Setup for hat functions
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{{{ setup new demod
-- demod to within +-2.5kHz of expected Doppler
ind := 1 - ind -- swap caddy index
-- This PAR denotes a double-buffer swap
[5000]REAL32 I0 IS I0b[ind] :
[5000]REAL32 Q0 IS Q0b[ind] :
[5000]REAL32 I1 IS I0b[1-ind] :
[5000]REAL32 Q1 IS Q0b[1-ind] :
PAR
inIQ0 ? I0; Q0
outIQ1 ! I1; Q1

-- PAR-legal multiple assignments are legal in occam
Iac, Iacback, Qac, Qacback := 0.0, 0.0, 0.0, 0.0
abind := 24 -- start value for step-by-5
inddemod := 0 -- start value for demod cycle
notdone := TRUE
}}}

Table 4.36: Setup for Doppler target within +-2.5kHz

the location of the hat nodes relative to the 25MHz input nodes. The ratio
24/3125 comes out exact in decimal as 0.00768.

The Doppler setup (Table 4.36) can change the demod tables after every
reset. This will happen because a downstream process has detected a pause
in message bits. As with Table 4.33, a double-buffer swap is indicated for I0
and Q0 to allow a parallel process to recalculate the demod tables during reset
time. If this is done by pointers, this Doppler setup is very fast.

In Table 4.37, the latest IF data is pulled from the TCM FIFO and subjected
to raw demodulation, which leaves in the double frequency term. From now
on, everything is REAL32 instead of INT16. This exact same code is found in
two places, because it is the same whether we are at a hat node or not. This
code is never executed if notdone is already FALSE.

The kill channel is expected to interrupt here to take down notdone when
it is time for a reset. This can be accomplished without select or similar
tools, if the programmer can access interrupt code. No more data are pulled
from the TCM FIFO in this pseudocode once the kill comes in, until reset is
accomplished via the double buffer on I0 and Q0.

Table 4.38 does the three-accumulator work at the center of Chapter 2,
Figure 2.6. After acback is output, it is assigned to the next hat (previously
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{{{ input, demod, and handle inddemod
PRI ALT
kill ? down
notdone := FALSE

inIQIF ? I16; Q16 -- pulled out of the TCM FIFO
SKIP

I := (REAL32 I16)
Q := (REAL32 Q16)
IBraw := I*I0[inddemod] + Q*Q0[inddemod]
QBraw := Q*I0[inddemod] - I*Q0[inddemod]
inddemod := inddemod + 1
(inddemod > 4999) & inddemod := 0
}}}

Table 4.37: Input digital IF and demod: appears twice in code

{{{ hat node accumulate excluding end signal
aj := a[abind]
ajm2 := a[24-abind]
bj := b[abind]
ajm1 := (1.0 - aj) - ajm2
Iacback := 0.00768*(Iacback + ajm2*IBraw)
Qacback := 0.00768*(Qacback + ajm2*QBraw)
notdone & SEQ
(Iacback = 0.0) & Iacback := 1.1755E-38(REAL32) -- smallest float
outIQ ! Iacback; Qacback -- no end signal

Iacback := Iac + ajm1*IBraw
Qacback := Qac + ajm1*QBraw
Iac := aj*IBraw
Qac := aj*QBraw
}}}

Table 4.38: Hat node accumulate and output
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{{{ prepare for next hat node
abind := abind - 5 -- value to be used on next loop
IF
abind > 0
nsteps := 129

TRUE
SEQ

nsteps := 130
abind := abind + 24

}}}

Table 4.39: Prepare for next hat node in tables

{{{ standard accumulate
Iac := Iac + bj*IBraw
Qac := Qac + bj*QBraw
cj := 1.0 - bj
Iacback := Iacback + cj*IBraw
Qacback := Qacback + cj*QBraw
bj := bj + 0.00768
}}}

Table 4.40: Standard accumulate, away from hat node

ac) and a new hat is started. For simplicity, I do not check for the special case
of the first two outputs, which are invalid because of inadequate data. The
third output pins down the delay, which is two output steps, or 2/(192kHz) =
10.4167 microseconds.

Notice that this code never outputs an end signal.
The block of Table 4.39 deals with the fact that 3125/24 = 130 5

24 . Sometimes
there are 129 standard steps between hat node steps, and sometimes 130.

The block of Table 4.40 accumulates for a standard step, away from any
hat node. Notice that a full unit weight of Braw is partitioned between acback
and ac. That is why the end result has to be multiplied by 0.00768 before
output.

It’s worth noting that a different strategy is used here than in Chapter 2
Section 2.6.2. Because there are more multiply-accumulates, Table 4.40 saves
one cycle compared with the temp-based approach in Chapter 2. We lose
(probably) two cycles due to the branched increment in Table 4.37, and at one
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cycle per 16-bit input from the TCM FIFO, that is probably 24 cycles per
inner loop, not counting loop overhead (which can probably be minimized). At
25MHz that uses up 600 million cycles per second, well under the RPi limit
of 700MHz. This approach would also work for the 28.8MHz case, just barely,
even without taking advantage of the simpler filter description (integer ratio).

This code is set up in such a way that kill (or reset) propagates down
from the filter through the CDMAtest nodes. This is because the Doppler is
changing, but dozens of message bits can be picked up before it moves the
frequency out of range. The gatherer and detector, to be discussed next, will
take advantage of the fact that Zac Manchester’s protocol gives pauses between
bytes during which no message waveforms are transmitted, and adjustments
can be made.

4.4.2.3 Concessions to C in pseudocode

The occam purist will notice that I am allowing a few C-like conventions to
creep into pseudocode. In occam there is no arithmetic operator precedence,
in fact every order is supposed to be defined by parentheses except repeated
AND and repeated OR expressions (which are evaluated by the usual “early
exit” technique that allows expressions like (x > 0) AND ((y/x) < 100) to
avoid runtime failure). In pseudocode, this cumbersome requirement is relaxed
by allowing C-like precedence, although when ordering matters, as it does here
(due to the favored status of MAC evaluations), putting the parentheses in is
recommended.

Another concession I’ve made is on explicit typing, which occam requires
for REALnn constants, any nn. Still, occam is a strict typing language and that
should be respected at least in the comments of pseudocode. The concrete
nature of Wide programming always leans toward knowing what are the storage
and computational demands of variables and expressions, and keeping a finger
on roundoff errors and overflow possibilities. It would actually be best if the
occam family of types were expanded by adding ones like UNSIGNED INT for
time variables, but I don’t do that here.

4.4.3 Gatherer and detector

The structure of the above pseudocode is part of a system with two main states:
detection and bit continuation. It remains in detection state, searching at a
fixed Doppler and a range of +-900Hz in twist, until it finds either a PRN0 or
PRN1 message bit. Then it expects more message bits at 100 Hz, either PRN0
or PRN1. This is bit continuation state. When it fails to detect a bit at the
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expected time, it sends a reset on kill and re-enters detection state, awaiting
new demod and CDMA arrays before listening again. This is made possible by
Zac Manchester’s silent times between bytes, which are variable and at least
0.5 second long, plenty of time for calculating demod and CDMA arrays.

4.4.3.1 Signal behavior

If the orbital speed is 7.8km/s and the Sprite passes overhead at 160km,
then the rate of change of the frequency is v2f

Hc = 555 Hz/s. However, it
drops off as about the inverse cube of the distance, so at 30 degrees above
the horizon it is only about 70 Hz/s. This means that an appropriate target
PRN0 or PRN1 with constant twist would work (worst error in twist position
0.5(555cycles/s2)(10ms)2 = 10 degrees, which would hardly affect the detection
integral).

Rob Fryer points out that the total change in frequency due to Doppler is
from about +10kHz to -10kHz, which could actually work in favor of detection,
since it is much more than the expected error due to the crystal, and by pointing
toward an approaching satellite with a Doppler-corrected frequency with an
antenna that spans more Doppler than the error range, it would hit it right on
at some point. This might not work if the satellite is not passing overhead.

Another complication is that Doppler expands and compresses all time
values, not just frequency. Thus a message bit is not exactly 10ms or 1920 filter
output steps. Though the error is less than 0.05 filter output step per message
bit, and is thus insignificant for a single detection integral, it can accumulate
over dozens of message bits. The same holds for the twist rate change of up to
20 degrees per message bit, which can soon cause a twist index move, given
that the twist step is 72 degrees. Thus after a bit is detected, the next bit is
expected at a filter output advance between 1919 and 1921, and at a twist
index change of -1, 0, or +1. Since both PRN0 and PRN1 are tested in both
in-phase and quadrature, this will survey 36 CDMAtest outputs. The trend
over several message bits will give information on Doppler and on crystal error.

According to the Link Budget [8], which is not substantially changed, the
signal-to-noise ratio (Eb/N0) for the full message bit is 20. This is despite the
carrier being much weaker than the noise (ratio 0.04), because the integration
with the target template tends to cancel the noise. Because of SLCE, other
Sprites’ signals act as noise in this respect. A signal, rotated by any amount, is
detected by a linear combination of the integrals of the in-phase and quadrature
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products:

PI = I ∗ I0 +Q ∗Q0

PQ = Q ∗ I0 − I ∗Q0 (4.1)

Perfect detection is if I + iQ = (I0 + iQ0)γ where i =
√

(− 1), γ is a nonzero
complex number, and the MSK templates are as shown in Chapter 2 Figure 2.6.
Then the sum of the squares of the two integrals is |γ|2L2 where L is the length
of the interval. This is multiplied by an effectiveness number η when I and Q
are twisted by a small linearly varying angle, or shifted by a small offset.

Because for MSK we have I2
0 +Q2

0 ≡ 1, a constant, it is easily seen that for
total twist α the effectiveness number is

ηα =
(sin(α/2)

α/2
)2 (4.2)

Not quite so obvious is the effectiveness number for a shift β, where β is the
ratio between the shift and a symbol bit. It turns out the worst case is a
sequence of identical symbol bits, which yields a sine wave of period 4 symbol
bits, and hence

ηβ ≥
(

cos(π2β)
)2 (4.3)

In the case described in Chapter 2, where α is 72 degrees and β is 1/3, we get

ηα = 0.87514
ηβ ≥ 0.75000 (4.4)

The product of these energy ratios is 0.65636, so even applying both together,
the signal-to-noise ratio is still 13.

4.4.3.2 Gatherer

This means that a clear, extended peak should appear, and that a minimax
check over 2 by 2 neighbor arrays of sums of form( ∫

PI(t)dt
)2 +

( ∫
PQ(t)dt

)2
should do the trick, where neighbors are in filter output steps (at 192kHz)
and in twist steps (separated by 72 degrees). Three winners for each Parallella
should suffice, where 2 x 1 winners are permitted at the twist edges, since a
hit may straddle the twist assignments of two Parallellas. I am assuming that
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each Parallella is dedicated either to PRN0 or to PRN1, so it can show all test
outputs for 30 or 31 twists.

There is an instance of gather (Table 4.41) on one node of each of the
six Parallellas, and it collects from 30 or 31 IQ pairs, and thus from 30 or 31
twists. The outer WHILE loop cycles at the beginning and at each reset, and
thus corresponds to a fixed filter Doppler +-900Hz. After that, for every filter
output step (192,000 times a second) it performs the inner WHILE loop. At
1.5GHz, it has 7800 cycles to do this.

The 60 or 62 CDMAtest nodes feed their accumulator output to this node,
as indicated by the PAR. Each CDMAtest node responds independently to a
reset, which is propagated by the filter to them all, so the reset signal should
come almost at the same time, but not necessarily exactly. The active[i]
device keeps acs[i] at 0.0 after its reset, so following steps, if any, flatline
these nodes and ignore them, till all the active[i] values go FALSE, which is
indicated by nactive = 0.

The actual math is glossed over in this pseudocode. The main math is in
winnotes.update which updates a scratchpad winnotes and, if the minimum
of one or more 2 × 2 or twist-edge 2 × 1 is discovered to beat criterion,
adds the best three to windata, sets valid to TRUE, and outputs windata.
Otherwise it sets valid to FALSE. Thus there is at most one PACKET output
per step. After reset is complete, a final, distinctive signal end is output, thus
passing reset back to the detector, which initiated it using its kill channel.

Notice the BOOL::[]PACKET channel protocol. This is an occam counted
protocol where the BOOL counts 0 if FALSE and 1 if TRUE. This permits the
outwin channel communication to be merely one BOOL if, as almost always
happens, a significant accumulator array is not detected.

You may ask why not omit the outwin communication completely if there
is no detection. It could have been programmed that way, but then there will
have to be a complex construction of ALTs on the input side, together with
the passing of a step count, because the receiver gets no step tick in most cases.
This way, the connels are more busy, but we get a clear tick.

How busy? Usually it’s six bytes per step, but the theoretical maximum
would be six packets per step. Each packet needs to transmit up to 12 Is and
Qs, but it should suffice for them to be normalized to the largest. Since two
decimal places should be plenty of resolution, this would be 24 data bytes and
one exponent byte, plus information about twist index (3 bytes) and minimums
(3 data bytes and one exponent byte), totalling 32. If all six were screaming at
once, that, plus six more bytes for the BOOLs, would total 198*192000 bytes
per second, or 38MB/s, well within the capability of USB 2, even if unbuffered.

Finally, count.of.TRUE is used because decrementing nactive within each
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PROC gather([62]CHAN OF REAL32 inmatch, CHAN OF BOOL::[]PACKET outwin,
VAL REAL32 criterion, VAL INT ntwist)
INT nconnect :
WHILE TRUE -- loop on restarting of message bit streams
[62]BOOL active :
[62]REAL32 acs :
INT nactive :
INT32 nhats :
PACKET windata :
NOTES winnotes :
SEQ
-- setup
nconnect := ntwist * 2 -- really should do this only once
SEQ i FROM 0 FOR nconnect

active[i] := TRUE
winnotes.initialize(winnotes) -- for coherence between ticks
nactive := nconnect -- this one will decrease
nhats := 0 -- this long int will count the filter output steps
WHILE (nactive > 0) -- loop on filter output steps
SEQ
-- All the still-active CDMAtest nodes feed in here
PAR i FROM 0 FOR nconnect
active[i] & SEQ
inmatch[i] ? acs[i]
(acs[i] = 0.0) & SEQ -- this is the reset flow
active[i] := FALSE -- acs[i] now stuck at 0.0

nactive := count.of.TRUE(active, nconnect) -- or spinlock?
(nactive > 0) & BOOL valid :
SEQ
nhats := nhats + 1
winnotes.update(winnotes, acs, nhats, criterion, ntwist,
windata, valid)

outwin ! valid
valid & outwin ! windata

signal.end(windata)
outwin ! TRUE
outwin ! windata -- end signal

:

Table 4.41: The gatherer node in a Parallella
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reset flow detection is illegal within members of a PAR. A spinlock could be
used, and if so, would be represented by an extra member of the PAR to handle
nactive, and a local channel array.

4.4.3.3 Detector

The detector code appears in Table 4.42. BOOL::[]PACKET channels result in 6
bytes per tick, or a “hum” of 1.2MB/s even when no incoming accumulator
passes the criterion. This permits the reception to be done with a simple PAR.

If the BOOL were not transmitted, the “hum” would disappear, but at the
cost of an ALT arrangement to catch the data when there is some. A looping
fair ALT can be done, as interrupt programmers know, but I will not cover
that just now. The current setup makes it easy to keep track of ticks, too.

The key is check.all.win, which is called every tick (192,000 times per
second), but most of the time does nothing. Thanks to initialize.params,
initialize.notes, and determine.params, it knows when the node is just
coming out of a reset, which puts it in detecting state. It keeps going until it
detects a bit, either 0 or 1, and then validbit comes true, a bit is output, and
it goes into continuing state. After that it listens only 1919, 1920, and 1921
ticks after the last bit, and to the last bit’s twist and its two neighbors. As
long as it keeps finding bits (either 0 or 1) in that narrow window, it keeps
transmitting them, but when it fails, it sets killing to TRUE and forces a
reset. The reset takes one or two ticks to percolate back to here, and then
nactive goes to 0 and the detector returns to the setup and to detecting state.

Movement of the twist value, which can be determined to a fraction of a
radian using the 2 × 2 accumulator packet data, determines the rate of change
of frequency, due to a combination of Doppler and crystal inaccuracy. This
permits determine.params to place the Doppler prediction arrays in the right
place for the next bit sequence, assuming that is placed according to the Zac
Manchester byte approach (22 bits followed by a quasi-random silence between
0.5 and 1.5 seconds).

Since we can maintain a tick count, we can detect the case where the
Sprite has passed below the horizon; a wait of more than 2 seconds will do.
In this case, killing can be set TRUE and determine.params can reset the
parameters to correspond to a later capture of an approaching satellite on the
next orbit.
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PROC detect([6]CHAN OF BOOL::[]PACKET inwin, CHAN OF PARAMS outparams,
CHAN OF BOOL messagebits, CHAN OF EVENT kill)
[6]PACKET windata :
NOTES bitnotes :
PARAMS fornextsetup :
SEQ
initialize.params(fornextsetup)
outparams ! fornextsetup
(PORT kill) ! FALSE
WHILE TRUE -- loop on restarting of message bit streams
INT nactive :
[6]BOOL active, valid :
BOOL outbit, killing :
SEQ

-- setup
active := [TRUE, TRUE, TRUE, TRUE, TRUE, TRUE]
nactive := 6
killing := FALSE
initialize.notes(bitnotes)
WHILE (nactive > 0) -- loop on filter output steps
SEQ
-- All the still-active CDMAtest node data feeds in here
SEQ i FROM 0 FOR 6
active[i] & SEQ
inwin[i] ? valid[i]
valid[i] & inwin[i] ? windata[i]
is.end(windata[i]) & SEQ -- this is the reset flow
active[i] := FALSE -- windata[i] stuck at END
nactive := nactive - 1

(nactive > 0) & BOOL validbit, killing :
SEQ
check.all.win(windata, bitnotes, valid, outbit,
validbit, killing)

IF
validbit
messagebits ! outbit

killing
SEQ
determine.params(bitnotes, fornextsetup)
(PORT kill) ! TRUE -- start reset process
outparams ! fornextsetup

TRUE
SKIP

(PORT kill) ! FALSE -- after end of reset process
:

Table 4.42: The detector node in a Raspberry Pi
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4.4.4 Glue and buffering

USB 2 is pretty fast and does its own buffering, but I am going to proceed on
the assumption that the data flow staggers at times, perhaps due to operating
system problems. In fact, according to [9], the bulk transfer works 8000 times
a second, at which time it can send a “microframe” of up to 13 packets of 536
bytes each, payload 512 bytes and framing 24 bytes. This implies a maximum
throughput of 53.248 MB/s.

Also of interest is that the standard defines a maximum response time of
192 bits (400 nanoseconds). This does not change the packet count limit, but
does imply that interrupt response and raw communication overhead must be
at least this good. The fact that one of 64 sets of 6 bits must be subjected to
“bit stuffing” and increase to 7 bits results in average packets being 537.38 and
does not change the count of 13. However, worst case bit stuffing would result
in packets of length 624 and only 11 packets in a microframe. This would imply
a worst-case throughput of 45.056 MB/s. However, shortening the packets by
one byte (payload 511, length 623) would allow 12 packets and a worst-case
throughput of 49.056 MB/s.

Though the Parallella has a USB slave port, and the RPi defaults to master
mode, it turns out that a USB slave cannot have two masters. Therefore the
LAN capability shared by the RPi and the Parallella will have to work on
one side. The RPi supports only 100 Megabit Ethernet, but that is enough
to deal with the average throughput on the downstream side, between the
gatherers and the detector. The fan of upstream IQ data coming from the filter
is 9.3MB/s, using the pair of REAL32s shown in the code. However, the RPi
can broadcast and thus use only 1.6MB/s on its side of the LAN switch.

4.4.4.1 LAN transmission buffer pieces

According to [10] and [11], the best latency that can be expected from a LAN
communication is about 600 microseconds. Using regular packets, with TCP
timestamps, without 802.1q, gives a 90-byte overhead and maximum net packet
payload 1462 bytes for regular packets, according to [12]. 90 bytes at 100Mb/s,
at 8 bits per byte, is 7.2 microseconds, which is too much burden at 192kHz,
so multiple IQ communications must be packaged per packet. If we expect
latency of 625 microseconds, and spend 375 microseconds (72 steps) gathering
IQ sets, then that gives maximum latency of 1 millisecond, and about 375
microseconds between arrival of packets.

But packet arrival is expected to be choppy, so it makes sense to enforce
a uniform delay of much more than 1 millisecond. Average arrival times can
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be used to smoothly correct the firing of IQ to CDMAtest nodes within each
Parallella, if there is any possibility of cumulative error due to disagreement of
the clocks.

All of this can be accomplished if a circular buffer is used, with output
about 180 degrees delayed from input, thus allowing the maximum variability
so that jitter can be smoothed out by a numerical “shock absorber.” Buffer
swap needs to be nearly instantaneous if the output is to tick along smoothly
at about 192kHz, so the best swap is an exchange of pointers, represented as
in filter by a PAR of exchanges.

The structure of the LAN transmission pieces is fourfold. On the RPi side,
package gathers IQ and broadcasts it in groups of 72, or every 375 microseconds.
On each Parallella, a passive IQbuffer with a circular buffer array supports
a pair of swap caddy drivers. One, inIQdriver, receives a whole group of 72
in one shot, and the other, outIQdriver, broadcasts 192,000 IQ data pairs
per second, at constant or nearly constant time intervals, each to 60 or 62
CDMAtest nodes.

The last three together comprise a double (read/write) flip driver occupying
a scatterer node on a Parallella, and there are six Parallellas. Their broadcast
times must be carefully calibrated so as to minimize any timing drift, as all the
streams must be regathered at the output. The timing of the LAN receptions
make this calibration possible.

The packager, in Table 4.43, is a simple progressive double buffer arrange-
ment. The PAR shows that at the same time as a new set of 72 IQ pairs
is coming in from the filter at the 192kHz rate, the last set, completed, is
being broadcast all at once through the LAN. The delay of one set (up to
375 microseconds) is managed by the Boolean notstarting and the index
indswap.

Of course, the packager must be implemented in code native to the Rasp-
berry Pi. This requires true parallelism, which can be managed with soft
interrupts that deposit I[i] and Q[i] at the correct location in a TCP/IP
buffer each time the filter outputs, and TCP/IP output of the other half-buffer
using DMA and a completion interrupt.

Tables 4.44 through 4.46 show the scatterer’s structure and its two
drivers. inIQdriver reads a batch from fromLANbroadcast, and outIQdriver
broadcasts timed outputs to the CDMAtest nodes via IQbroadcast[j]. In
update.outIQdriver.notes and next.outIQdriver.time, coding is assumed
to exist that smoothly spaces the outputs and, using arrivaltime and time,
keeps the write from wandering too far from 180 degrees (5/2 batches) from
the read. The use of 5 as the count of buffers is probably low, but it expresses
the principle. Actual buffering will depend on experiments having to do with
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PROC package(CHAN OF REAL32; REAL32 inIQ,
[6]CHAN OF [72]REAL32; [72]REAL32 toLANbroadcast)
[2][72]REAL32 Iswap, Qswap : -- doublebuffer
-- loop
WHILE TRUE
BOOL notdone, notstarting :
INT indswap :
SEQ
notdone := TRUE
notstarting := FALSE
indswap := 0
WHILE notdone
SEQ
[72]REAL32 I IS Iswap[indswap] :
[72]REAL32 Q IS Qswap[indswap] :
VAL [72]REAL32 Iout IS Iswap[1-indswap] :
VAL [72]REAL32 Qout IS Qswap[1-indswap] :
PAR
SEQ i FROM 0 FOR 72
IF
notdone
SEQ
inIQ ? I[i]; Q[i]
(I[i] = 0.0) & notdone := FALSE

TRUE -- stop receiving after a reset detected
I[i], Q[i] := 0.0, 0.0

notstarting & PAR j FROM 0 FOR 6 -- implemented by LAN switch
toLANbroadcast[j] ! Iout; Qout

indswap := 1 - indswap
notstarting := TRUE

VAL [72]REAL32 Iout IS Iswap[1-indswap] :
VAL [72]REAL32 Qout IS Qswap[1-indswap] :
PAR j FROM 0 FOR 6 -- implemented by LAN switch
toLANbroadcast[j] ! Iout; Qout

:

Table 4.43: The packager node in a Raspberry Pi
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PROC scatter(CHAN OF [72]REAL32; [72]REAL32 fromLANbroadcast,
[62]CHAN OF REAL32; REAL32 IQbroadcast, VAL INT ntotal)
TIMER clock : -- shared by buffer and both drivers
CHAN OF [72]REAL32; [72]REAL32 in, inback, out, outback :
CHAN OF BOOL intrigger, outtrigger :
CHAN OF INT64 intime, outtime :
PAR

... inIQdriver

... outIQdriver

... IQbuffer
:

Table 4.44: Scatterer on a Parallella

latency irregularities.
Notice, in Table 4.44, the large number of channels internal to PROC scatter.

Their action will probably have to be modeled by interrupt code or asynchronous
driver code in C. The behavior implied by the pseudocode must be emulated
by the C code, sometimes not a trivial task.

Table 4.47 shows the circular buffer process, which is not smart in any way,
but merely offers the mechanics to implement both flip drivers at once without
causing hiccups in the output. All the channels used by IQbuffer are internal.
The swap caddy PARs are assumed to work by passing pointers, not data. The
normal order of things should be wasjin = 0, wasjin = 1, wasjin = 2, jout = 0,
wasjin = 3, jout = 1 . . . so no collisions should ever take place.

This setup assumes latency irregularities are small, say 200 microseconds
(one half batch time) at most. Long-term errors such as clock skew among the
boards must be detected and handled by the programming of outIQdriver.

4.4.4.2 USB transmission buffer pieces

Now we proceed to the use of USB at the downstream end. The detector RPi
will be the master, and the six Parallellas the slaves. It will not do for each filter
output step on each Parallella to be associated with a USB communication,
even though most of them are only one byte long, because there is a 36-byte
overhead which would nearly fill the whole practical capacity of USB. Therefore,
the procedure is to send packed INT::[]BYTE bursts of 160 steps each. That
is about the maximum that can go in one microframe. Detection of a reset
causes a short burst to be sent at the end. This is the packer1 code found in
Table 4.48.
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{{{ inIQdriver
BOOL notdone :
INT64 thetime :
[2][72]REAL32 Ib, Qb :
INT ind : -- swap caddy index
SEQ
notdone := TRUE
ind := 1 -- swap caddy index
WHILE notdone
SEQ

ind := 1 - ind -- swap caddy index
[72]REAL32 I IS Ib[ind] :
[72]REAL32 Ix IS Ib[1-ind] :
[72]REAL32 Q IS Qb[ind] :
[72]REAL32 Qx IS Qb[1-ind] :
SEQ
fromLANbroadcast ? I; Q
clock ? thetime
notdone := (I[71] <> 0.0)
intrigger ! notdone
intime ! thetime
-- This PAR denotes a flip driver read
PAR

in ! I; Q
inback ? Ix; Qx

}}}

Table 4.45: Scatterer flip driver (read)

Because the end comes rather quickly (22 bits of 10 ms each, according
to Zac Manchester’s setup) we expect little skew to develop between the six
Parallellas. Therefore only a two-deep burst buffer is implied by the RPi side
of the transmission. (Each burst is about 833 microseconds, and the expected
skew much less than that.) The code for doing this is stacker1 in Table 4.49.
Although it lives on the RPi, it is for only one of the Parallellas, and therefore
there will be six instances of stacker1.

Basically, packer1 and stacker1 are inverses of one another, so the output
of stacker1 looks as if it was straight from gather. However, it comes in
bursts. If this were undesirable (as for instance in a music application) we
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{{{ outIQdriver
BOOL notdone :
INT64 arrivaltime, time, wastime :
NOTES outIQdriver.notes :
[2][72]REAL32 Ib, Qb :
INT ind :
SEQ
notdone := TRUE
ind := 1 -- swap caddy index
initialize.outIQdriver.notes(outIQdriver.notes, ntotal)
WHILE notdone
SEQ
outtrigger ! TRUE -- master signal
outtime ? arrivaltime
-- This PAR denotes a flip driver write
ind := 1 - ind -- swap caddy index
PAR

out ? Ib[ind]; Qb[ind]
outback ! Ib[1-ind]; Qb[1-ind]

clock ? time
update.outIQdriver.notes(outIQdriver.notes, arrivaltime, time)
[72]REAL32 I IS Ib[ind] :
[72]REAL32 Q IS Qb[ind] :
SEQ i FROM 0 FOR 72
notdone & SEQ
wastime := time
time := next.outIQdriver.time(outIQdriver.notes, wastime)
clock ? AFTER time
-- this is broadcast to CDMAtest nodes
PAR j FROM 0 FOR ntotal
IQbroadcast[j] ! I[i]; Q[i]

notdone := (I[i] <> 0.0)
outtrigger ! FALSE

}}}

Table 4.46: Scatterer flip driver (broadcast write)
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{{{ IQbuffer
BOOL notdone, notoutdone :
INT64 thetime[5] :
INT wasjin, jin, wasjout, jout :
[5][72]REAL32 I, Q : -- circular buffers for flip drivers
SEQ

notdone := TRUE
notoutdone := TRUE
wasjin := 0
SEQ j FROM 1 FOR 3
notdone & SEQ
intrigger ? notdone
intime ? thetime[wasjin]
-- This PAR denotes a flip driver read
PAR
in ? I[wasjin]; Q[wasjin] -- read block
inback ! I[j]; Q[j]

wasjin := j
jin := wasjin + 1 -- normally 4
jout := 0
wasjout := 4
WHILE notoutdone -- notoutdone lasts longer than notdone

ALT
outtrigger ? notoutdone
notoutdone & SEQ
outtime ! thetime[jout]
-- This PAR denotes a flip driver write
PAR
out ! Ib[jout]; Qb[jout] -- write block
outback ? Ib[wasjout]; Qb[wasjout]

wasjout := jout
jout := jout + 1
(jout > 4) & jout := 0

notdone & intrigger ? notdone
SEQ -- happens even if notdone turned FALSE
intime ? thetime[wasjin]
-- This PAR denotes a flip driver read
PAR
in ? I[wasjin]; Q[wasjin] -- read block
inback ! I[jin]; Q[jin]

wasjin := jin
jin := jin + 1
(jin > 4) & jin := 0

}}}

Table 4.47: Scatterer flip driver circular buffer
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would insert a timed FIFO as with outIQdriver in scatter. As it is, timing is
dictated by the SEQ i FROM 0 FOR 6 in detect, which forces all six instances
of stacker1 to align timewise. The requirement that communications, other
than CHAN OF EVENT, be acknowledged, transmits this back to the first location
of a significant FIFO.

Because communications are internal and therefore very fast, we expect
the output side of stacker1 to take much less than 833 microseconds, thus
permitting some skew buffering action. Of course, the six parallel instances
will have to be hand-coded in equivalent C code, probably with some polling
approach that is essentially sequential. It does not matter much, because the
data flow here is very slow. The six parallel stackers are a convenience of data
flow description, not a rigid coding guide.

4.4.4.3 Doppler and crystal twist

The doppler and crystal pieces are active only upon reset. They receive the
params that are calculated by the detector, and recalculate the tables that
are used to demod and test the incoming data at various twists. Since half a
second, at least, is spent quiet between bytes under Zac Manchester’s system,
they have lots of time to do all their calculations and prepare for the next
message bit.

Two caddy swaps can be noted at reset in CDMAtest. This is to allow
crystal to write its work directly to arrays local to each of the CDMA nodes.
This is an approach favored by the Parallella. For efficiency, of course, the
caddy swaps should be implemented by pointer moves in some form.

4.4.4.4 Possible variations on this theme

It would be possible to place doppler in the setup after each reset of filter,
and to place crystal in the inIQdriver setup of scatter after each reset. As
I have it, the channels between filterRPi and the scatter node of each Parallella
have to be overlaid by some device, not shown. They are really transmissions
through the same LAN switch, all in the same direction (except for back which
is really just an acknowledge).

The “guts” of the big PAR in crystal is ill-suited to a single Parallella
node, and could be moved to the 62 target CDMA nodes, where it would only
be a short interlude on the setup of each one. See Table 4.52, and note that
all the arrays (IPRNbase, QPRNbase, ct1, and st1) are constant. In theory,
therefore, shared read-only memory is OK, and the address of the four arrays
could be shared by the upstream node with all 62 CDMA nodes.
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PROC packer1(CHAN OF BOOL::[]PACKET inwin, CHAN OF INT::[]BYTE packed)
[2][5280]BYTE packb :
[2]INT indpackb :
WHILE TRUE -- loop on restarting of message bit streams
BOOL notdone, notstarting :
INT indswap :
SEQ
notdone := TRUE
notstarting := FALSE
indswap := 0
WHILE notdone
SEQ
INT indpack IS indpackb[indswap] :
VAL INT indpackout IS indpackb[1-indswap] :
[5280]BYTE pack IS packb[indswap] :
VAL [5280]BYTE packout IS packb[1-indswap] :
PAR
BOOL valid :
PACKET windata :
SEQ
indpack := 0
SEQ i FROM 0 FOR 160
notdone & SEQ
inwin ? valid
pack[indpack] := (BYTE valid)
indpack := indpack + 1
valid & SEQ
inwin ? windata
[]BYTE winbytes RETYPES windata :
[pack FROM indpack FOR 32] :=
[winbytes FROM 0 FOR 32]

indpack := indpack + 32
notdone := NOT is.end(windata)

notstarting &
packed ! indpackout::[packout FROM 0 FOR indpackout]

indswap := 1 - indswap
notstarting := TRUE

VAL INT indpackout IS indpackb[1-indswap] :
VAL [5280]BYTE packout IS packb[1-indswap] :
packed ! indpackout::[packout FROM 0 FOR indpackout]

:

Table 4.48: The packer piece in a Parallella
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PROC stacker1(CHAN OF INT::[]BYTE packed, CHAN OF BOOL::[]PACKET outwin)
[2][160]BOOL validsb :
[2][160]PACKET windatasb :
[2]INT indmaxb :
WHILE TRUE -- ignore restarting of message streams

BOOL notdone, notstarting, inputting :
INT indswap :
SEQ

notdone := TRUE
notstarting := FALSE
inputting := TRUE
indswap := 0
WHILE notdone

BOOL wasinputting :
SEQ

wasinputting := inputting -- goes FALSE when read done
VAL INT indmax IS indmaxb[indswap] :
INT indmaxin IS indmaxb[1-indswap] :
[160]PACKET windatas IS windatasb[indswap] :
[160]PACKET windatasin IS windatasb[1-indswap] :
[160]BOOL valids IS validsb[indswap] :
[160]BOOL validsin IS validsb[1-indswap] :
[5280]BYTE pack :
PAR

inputting & INT indpack :
SEQ

packed ? indpack::[pack FROM 0 FOR indpack]
indpack := 0
SEQ i FROM 0 FOR 160 -- need to detect reset here

inputting & SEQ
indmaxin := i
validsin[i] := (BOOL pack[indpack])
indpack := indpack + 1
validsin[i] & SEQ

[]BYTE winbytes RETYPES windatasin[i] :
[winbytes FROM 0 FOR 32] :=

[pack FROM indpack FOR 32]
indpack := indpack + 32
inputting := NOT is.end(windatasin[i])

notstarting & SEQ i FROM 0 FOR (indmax+1)
SEQ

outwin ! valids[i]
valids[i] & outwin ! windatas[i]

indswap := 1 - indswap
notstarting := TRUE
notdone := wasinputting

:

Table 4.49: The stacker piece in a Raspberry Pi
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PROC doppler(CHAN OF PARAMS inparams, [6]CHAN OF PARAMS outparams,
[6]CHAN OF BOOL back, CHAN OF [5000]REAL32; [5000]REAL32 outIQ0, inIQ1)
[5000]REAL32 I1, Q1 : -- dummies for write unchangeable swap
[5][5000]I0b, Q0b : -- -2 -1 0 1 2 times 5000 Hz Doppler center
PARAMS theparams :
VAL REAL32 pi IS 3.1415926536 :
SEQ

-- setup (this can be done more efficiently)
SEQ j FROM 0 FOR 5

VAL INT jm2 IS j - 2 :
SEQ i FROM 0 FOR 5000

REAL32 x IS (REAL32 i*jm2)*pi/2500.0 :
I0b[j][i], Q0b[j][i] := cos(x), -sin(x)

-- loop
WHILE TRUE

INT inddoppler :
SEQ

-- demod to within +-2.5kHz of expected Doppler
inparams ? theparams
PAR j FROM 0 FOR 6

BOOL gotcha :
SEQ

outparams[j] ! theparams -- to one of the Parallellas
back[j] ? gotcha -- signal that this Parallella is ready

-- current.doppler is nearest integer to doppler/(5000 Hz)
-- and is always between -2 and +2
inddoppler := current.doppler(theparams) + 2
-- This PAR denotes a double-buffer swap
VAL [5000]REAL32 I0 IS I0b[inddoppler] :
VAL [5000]REAL32 Q0 IS Q0b[inddoppler] :
PAR

outIQ0 ! I0; Q0 -- This can really share the data (VAL)
inIQ1 ? I1; Q1 -- This is actually not needed

-- This PAR passes stuff on to the six Parallellas
:

Table 4.50: The doppler piece on a Raspberry Pi
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PROC crystal([62]CHAN OF [1920]REAL32; [1920]REAL32 outIQ0, inIQ1,
CHAN OF PARAMS inparams, CHAN OF BOOL back,
VAL BOOL isPRN1, VAL INT ntwiststart, ntwistcount)
VAL INT ntotal IS ntwistcount*2 :
VAL REAL32 pi IS 3.1415926536 :
PARAMS theparams :
[1920]REAL32 IPRN, QPRN, IPRNbase, QPRNbase :
[9600]REAL32 ct1, st1 :
SEQ

-- setup (this can be done more efficiently)
enter.untwisted.PRN(isPRN1, IPRN, QPRN) -- FALSE is PRN0, TRUE is PRN1
SEQ i FROM 0 FOR 9600

REAL32 x IS (REAL32 i)*pi/4800.0 : -- 72 degree twist over 1920
ct1[i], st1[i] := cos(x), sin(x)

-- loop
WHILE TRUE

REAL32 twist :
SEQ

inparams ? theparams
twist := get.basetwist(theparams) -- total twist, message bit
SEQ i FROM 0 FOR 1920

REAL32 c IS cos((REAL32 i)*twist/1920.0) :
REAL32 s IS sin((REAL32 i)*twist/1920.0) :
SEQ

IPRNbase[i] := IPRN[i]*c + QPRN[i]*s
QPRNbase[i] := QPRN[i]*c - IPRN[i]*s

PAR k FROM ntwiststart FOR ntwistcount
PAR j FROM 0 FOR 2 -- I,Q or -Q,I

... calculation for a CDMAtest node
back ! TRUE -- signal doppler that this Parallella is done

:

Table 4.51: The crystal piece on a Parallella

In practice, it is not clear that such heavy simultaneous memory access
would work well. In fact, the issue is unimportant, because a huge amount of
time intervenes between the moment when a reset is signaled (which is when
this calculation of trigonometry tables begins) and the moment when the next
message byte will begin.

Finally, the use of swap caddies everywhere is overkill. See Figure 4.9 below
for a simpler device, the slider slot, which however has two modes of action.
This is the simplest client/server, using a pair of single moves in opposite
directions, and with care could be substituted for most of our swap caddies.
Even simpler variations on it are possible in the read-only case: an address can
be broadcast, and after use an acknowledge received from each target.
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{{{ calculation for a CDMAtest node
INT i IS (k-ntwiststart)*2 + j :
[1920]REAL32 I0, Q0, I1, Q1 :
INT m :
SEQ
PAR
outIQ0[i] ? I0; Q0 -- This can really share the data (VAL)
inIQ1[i] ! I1; Q1 -- This is actually not needed

m := 0
SEQ n FROM 0 FOR 1920
SEQ

IF
j = 0

SEQ -- twisted template in-phase
I0[n] := IPRNbase[n]*ct1[m] + QPRNbase[n]*st1[m]
Q0[n] := QPRNbase[n]*ct1[m] - IPRNbase[n]*st1[m]

TRUE -- j = 1
SEQ -- twisted template in quadrature
I0[n] := IPRNbase[n]*st1[m] - QPRNbase[n]*ct1[m]
Q0[n] := IPRNbase[n]*ct1[m] + QPRNbase[n]*st1[m]

m := m + k
(m < 0) & m := m + 9600
(m >= 9600) & m := m - 9600

PAR
outIQ0[i] ! I0; Q0 -- This can really share the data
inIQ1[i] ? I1; Q1 -- This is actually not needed

}}}

Table 4.52: The crystal calculation
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4.4. Data-flow pseudocoding of the satellite CDMA receiver

CHAN OF INT16; INT16 inIQIF : -- TRUE INPUT (from the ADC at 25 MHz)
CHAN OF BOOL messagebits : -- TRUE OUTPUT (100 bits/second or less)
CHAN OF PARAMS nextparams : -- detectRPi feeds back to filterRPi
[6]CHAN OF PARAMS params.broadcast : -- filterRPI feeds to Parallellas
[6]CHAN OF BOOL back.signal : -- Parallellas feed back to filterRPi
[6]CHAN OF [72]REAL32; [72]REAL32 LAN.broadcast : -- I,Q package
[6]CHAN OF INT::[]BYTE packed : -- 160-step packages to detectRPi
VAL [3]INT ntwists IS [30, 31, 30] : -- breakup of twist steps from
VAL [3]INT mintwists IS [-45, -15, 16] : -- -45 to +45 inclusive
VAL REAL32 criterion IS get.criterion("linkBudget") : -- external info
PAR

-- This is the filter node, an enhanced RPi
CHAN OF [5000]REAL32; [5000]REAL32 IQ0, IQ1:
CHAN OF REAL32; REAL32 IQ :
PAR

filter(inIQIF, IQ, IQ0, IQ1, kill)
package(IQ, LAN.broadcast)
doppler(nextparams, params.broadcast, back.signal, IQ0, IQ1)

-- This is the set of six Parallellas
PAR k FROM 0 FOR 3

PAR j FROM 0 FOR 2
-- Within each Parallella, there are 1 + 62 + 1 nodes
[62]CHAN OF REAL32; REAL32 IQbroadcast :
[62]CHAN OF [1920]REAL32; [1920]REAL32 localIQ0, localIQ1 :
[62]CHAN OF REAL32 match :
VAL INT i IS 2*k+j : -- index of a Parallella
PAR

-- This is the upstream node
PAR

scatter(LAN.broadcast[i], IQbroadcast, 2*ntwists[k])
crystal(localIQ0, localIQ1, params.broadcast[i],

back.signal[i], BOOL j, mintwists[k], ntwists[k])
-- Here are up to 62 CDMA test nodes
PAR n FROM 0 FOR 2*ntwists[k]

CDMAtest(IQbroadcast[n], match[n], localIQ0[n], localIQ1[n])
-- This is the downstream node
CHAN OF BOOL::[]PACKET win :
PAR

gather(match, win, criterion, ntwists[k])
packer1(win, packed[i])

-- This is the output RPi
[6]CHAN OF BOOL::[]PACKET win : -- FIFO for each Parallella
PAR

PAR i FROM 0 FOR 6
stacker1(packed[i], win[i])

detect(win, nextparams, messagebits, kill)

Table 4.53: The complete satellite CDMA receiver software
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Figure 4.9: Slider slot

4.4.5 Overview

Table 4.53 shows all the code of the satellite CDMA receiver.
There are multiple nestings of PARs, and both internal and external channels.

This is openly mapped onto the hardware, and all communications are through
channels that live on the outermost levels of this code description. There are, in
fact, more channels than there are hardware connections, even if you consider
a full duplex connection to be two connections. This is because it is a purpose
of pseudocode to elucidate data flows, and in normal design there can be
more than one data flow sharing a connection.

Mapping a pseudocode description like this back into C code and hard-
ware will often involve simplification. For instance, params.broadcast and
LAN.broadcast will be different usage times of the same LAN switch in broad-
cast mode. Some of the pieces will disappear, or be distributed into sequential
code found in other pieces.

However, the pseudocode design retains its value through all that, as a
criterion of judgement that can be applied to any code changes to see if they
are faithful to the design. This value can extend over decades and many changes
of personnel, and be relied upon by external users.

4.5 References
[1] Dickson, Lawrence: “Transparent Analogy as a Foundation for Language,”

6 April 2006. http://www.tjoccam.com/tacliwhp.pdf

180

http://www.tjoccam.com/tacliwhp.pdf


4.5. References

[2] Inmos Limited: Transputer Instruction Set, a compiler writer’s guide (Doc-
ument Number 72 TRN 119 05). Prentice Hall, 1988. PDF found at
http://www.transputer.net/iset/iset.asp

[3] Inmos Limited: occam 2 Reference Manual (Document Number 72 occ
45 01 or 72 occ 45 02). Prentice Hall, 1988. PDF found at http://www.
transputer.net/obooks/obooks.asp

[4] Inmos Limited: Transputer Architecture Reference Manual (Document
Number 72-TRN-048-03). INMOS, July 1987. http://www.transputer.
net/fbooks/tarch/tarch.html

[5] Inmos Limited: Extraordinary use of transputer links (Document Number
72-TCH-001). http://www.transputer.net/tn/01/tn01.html

[6] Rabagliati, Andy: “Sources of extraordinary link handling libraries”.
https://groups.google.com/forum/#!topic/comp.sys.transputer/
BT28d5o5lEc

[7] Harriman, Guy: Transputer Instruction Set Appendix. November 29, 1988.
http://www.transputer.net/iset/appendix/appendix.html

[8] Manchester, Zac: Sprite Spacecraft Link Budget. https://github.com/
zacinaction/kicksat-groundstation/blob/master/Link%20Budgets.
xlsx

[9] Electrical Engineering Stack Exchange: “Why are USB devices
slower than 480 MBit/s.” http://electronics.stackexchange.com/
questions/24700/why-are-usb-devices-slower-than-480-mbit-s

[10] arstechnica: “LAN latency (cisco)”. http://arstechnica.com/civis/
viewtopic.php?f=10&t=68851

Best expected (2006) about 0.6ms, and 0.13ms was derided as unrealistic.
[11] Coulouris, Dollimore and Kindberg: Distributed Systems: Concepts and

Design, Edn. 3 Instructor’s Guide. Pearson Education, 2001. http://www.
cdk3.net/ig/slides/Chapter3Slides.pdf

Figure 3.1 Network types
LAN 10-100 Mbps Latency 1-10ms

[12] P. Dykstra: “Protocol Overhead.” March 2001 - August 2013. http://sd.
wareonearth.com/~phil/net/overhead

Yes TCP timestamps, IPV4, no 802.1q: (1500-52)/(1500+38) 38 is
Ethernet

[13] Niiler, Eric: “Have New Cars Gone Haywire?” Discovery News, April
3, 2014, 5:00 PM ET. http://news.discovery.com/autos/drive/have-
new-cars-gone-haywire-140403.htm

181

http://www.transputer.net/iset/iset.asp
http://www.transputer.net/obooks/obooks.asp
http://www.transputer.net/obooks/obooks.asp
http://www.transputer.net/fbooks/tarch/tarch.html
http://www.transputer.net/fbooks/tarch/tarch.html
http://www.transputer.net/tn/01/tn01.html
https://groups.google.com/forum/#!topic/comp.sys.transputer/BT28d5o5lEc
https://groups.google.com/forum/#!topic/comp.sys.transputer/BT28d5o5lEc
http://www.transputer.net/iset/appendix/appendix.html
https://github.com/zacinaction/kicksat-groundstation/blob/master/Link%20Budgets.xlsx
https://github.com/zacinaction/kicksat-groundstation/blob/master/Link%20Budgets.xlsx
https://github.com/zacinaction/kicksat-groundstation/blob/master/Link%20Budgets.xlsx
http://electronics.stackexchange.com/questions/24700/why-are-usb-devices-slower-than-480-mbit-s
http://electronics.stackexchange.com/questions/24700/why-are-usb-devices-slower-than-480-mbit-s
http://arstechnica.com/civis/viewtopic.php?f=10&t=68851
http://arstechnica.com/civis/viewtopic.php?f=10&t=68851
http://www.cdk3.net/ig/slides/Chapter3Slides.pdf
http://www.cdk3.net/ig/slides/Chapter3Slides.pdf
http://sd.wareonearth.com/~phil/net/overhead
http://sd.wareonearth.com/~phil/net/overhead
http://news.discovery.com/autos/drive/have-new-cars-gone-haywire-140403.htm
http://news.discovery.com/autos/drive/have-new-cars-gone-haywire-140403.htm




5Programming Using Connel

Abstract

This chapter continues, in the light of the science of Chapter 4, the
Connel introduction started in Chapter 3. Using pseudocode and Connel
tools, some simple communicating C programs are developed, running
in both Linux and Windows. These are programs actually found in the
Connel source distribution. Some use serial communications, and others
use SOCKLOCAL (Linux socket or Windows named pipe) communica-
tions. The techniques of their construction can be extended to general
communicating programs, including masters of heterogeneous, embedded,
or graphics pieces.

5.1 How to use Connel tools
The best place to start is the spirit of Chapter 4, Section 4.1. There, a distinction
was made between “regular” and “critical” programming, where in this context
“critical” programming is that which depends significantly on outside behavior.
Compare [2].

Here by “outside behavior” I mean outside your code, if you are the
software creator. This would create an insuperable mountain of critical code in
standard Deep programming, since it would have to include all the hidden driver
and method code supplied from outside, with its many-layered unpredictable
features. Almost all reused code becomes critical because there are no limits on
its behavior. Even something as apparently straightforward as data structures
(“objects”) is critical because they are laden with callbacks and communication
addresses of unfathomable complexity.

That’s why Deep programming has to proceed side by side with a battery
of tests that are run at every step. You, the software creator, are basically
along for the ride, and only by experimentation can you find out where your
wild horses are going to take you. It’s an inductive, not a deductive, process.
And as for all the things you did not test—oh well, the customers will test
them, sooner or later. We just saw that happen in October 2013 with the
“Obamacare” rollout.

Wide programming, consistently applied, avoids all this. All the whiplash
delivered by the outside world is on the outside of your program structure,
as in Chapter 4. (By the way, one point needs to be made clear. Not just
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communications and events are “outside world,” but also timeouts, timer waits,
and so-called exceptions of every kind, like sensor failure in the Orchard and loss
of satellite communication in the Receiver.) As the software creator, you are
able to reuse code, both regular and critical, without adding any uncertainty to
the behavior of your program. You can even change reused code (or hardware)
in midstream, because you are confident it does the same thing—like a new
alternator in a classic car.

The Connel contribution is to make it easy to separate pieces that are
typically tangled in a centralized “program build.” This is based on real dis-
tinctions between major functions whose programming (and reused code) is
significantly different. Using Connel, they can be separated into independent
programs, separately testable, and their timing and communications moved to
the top of the designs. Another motivator for independent programs is the
nature of their IO, or the hardware with which they naturally communicate.
The bigger the project, the more different kinds of “specialty” are imposed
by this diversity, and if their nearest programming can be kept separate, the
rewards are great downstream.

Each Connel-based piece is a different program. Timing is communicated
using connels as described above, and small packets may as well be sent this
way too. Large blocks of data may be passed using robust shared memory
techniques, which are also controlled by connels passing ownership signals. In
some cases large blocks are transmitted across especially fast channels, which
are different from the standard connels. This kind of thing is easily designed,
in a way similar to FTP, and I will not go into further detail about it here.

Timing usually uses the system clock, and we give examples of that in this
chapter. However, each system clock has a granularity, and this is often too
coarse. Special hardware can be added if needed, supporting a fine-grained timer
queue by communicating on a low-latency channel. That is really embedded
code and won’t be covered in this chapter.

The main thing in writing practical Connel-based code is, like any other
low-level communications library, to patch together blocks from known good
examples and modify them to work in the new code. The examples given here
will be a good start for that. As a rule, Connel-based code is bulky, and I
mitigate that with a folding editor. Other techniques may be used, such as
macros, but I do not explore them here.

Once the communicating backbone of a piece has been written, “ballast”
can be introduced in the form of loops that use about the same CPU and time
as the ultimate calculations. Then they can be made to communicate with
other pieces or with dummies. The data or controls that fly between them can
be made to pass through spies, one of which is detailed in this chapter.
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5.2. Rundown of pseudocode for sercomio

5.2 Rundown of pseudocode for sercomio
One program has already been exhibited in full. I will here show its pseudocode,
which can be related to the actual code in Chapter 3. This is in reverse of the
normal procedure, but should be instructive.

The first thing you will notice is that the pseudocode is very short compared
to the actual C code expanded in Chapter 3, Section 3.6. This is not because
of large amounts of regular code. All that sercomio does is send bytes across
a serial connection and display them (although, to be sure, some blocks of the
display and command-line argument code are summarized in single lines in
the pseudocode). It is mostly because the occam-like primitives expand into
several Connel entities each.

The first thing to do is to enumerate the external conditions of the piece.
They are to be consistent with either a call in a script or a keyed-in command-
line call taking over a whole screen.

CHAN OF BYTE kbd, scr are different from CHAN OF BYTE serial in this
respect. kbd and scr are, in the current Connel, the standard terminal IO—not
always equivalent to stdin and stdout, although redirection works for the
latter. Terminals can be manipulated using the expect interactive programming
tool (see [3]). They are specifically targeted by connel type CONNEL_STD.

By contrast, serial is of connel type CONNEL_SERIAL. Where kbd and
scr are unique (they are placed external only because what connects to them
is external), serial can be one of many. If it were real occam, the channels
(full duplex) would be determined by whatever called PROC sercomio. In an
OS, we need an extra formal, name, and will have to open the connel to get
two channels, serialin and serialout.

Thus, the existence of connels requires connel_list_init, connel_begin,
and connel_open, while the use of machines (ALT) requires connel_set_init,
connel_machine_begin, and connel_machine_add. These are summarized by
open.* calls in the pseudocode. Similarly, the close.* calls in the pseudocode
stand for connel_close.

Added complications arise with the ALT, which as described in Chap-
ter 3 follows a more general approach, intended to use connel_listen and
connel_deafen to deal with a TRUE or FALSE boolean &, and to allow
the WaitForMultipleObjects (asynchronous IO) model. Therefore each ma-
chine must involve connel_listen and each incoming communication involves
connel_read_start and CONNEL_FINISH as well as connel_select.

That involves only the reads (kbd and input serial). The output on serial
is synchronous (connel_write) and scr is actually not used at all. Instead,
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-- This is pseudocode for sercomio.c.
PROC sercomio(CHAN OF BYTE kbd, scr, serial, CHAN OF EVENT interrupt,
VAL []BYTE name, VAL PACKET args, BYTE exit, BOOL notInterrupted)
CHAN OF BYTE serialin, serialout :
BOOL noexitchar, isbinary, notQuiet, yesdrop :
BYTE exitchar :
INT ret :
SEQ
notInterrupted := TRUE -- updated later by interrupt
getargs(args, noexitchar, isbinary, notQuiet, yesdrop, exit)
(exit = 0(BYTE)) & SEQ

open.kbd(kbd, ret)
open.scr(scr, ret)
open.serial(name, serial, serialin, serialout, ret)
BYTE thechar, thechar2 :
BOOL notdone :
SEQ
notdone := (ret > 0) AND notInterrupted
WHILE notdone

PRI ALT
interrupt ? ANY -- represents a Ctrl-C interrupt

notInterrupted := FALSE
kbd ? thechar

SEQ
comment.kbd(isbinary, notQuiet, thechar)
serialout ! thechar
notdone := (noexitchar OR (thechar <> exitchar)) AND

notInterrupted
serialin ? thechar2

SEQ
comment.serial(isbinary, notQuiet, thechar2)
notdone := (noexitchar OR (thechar2 <> exitchar)) AND

notInterrupted
close.scr(scr, ret)
yesdrop & close.serial(serial, serialin, serialout, ret)
close.kbd(kbd, ret)

:
}}}

Table 5.1: View of sercomio.occ in origami (top comments removed)
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CONNEL_DINFO and CONNEL_DWARN are used to make output show up on the
screen.

This is the main theme of communication for sercomio, but a good deal of
other detail is found in the pseudocode call. It relates to the top and bottom of
Chapter 4, Figure 4.5. CHAN OF EVENT interrupt and BOOL notInterrupt re-
fer to the Ctrl-C that is capable of causing sercomio to halt. VAL []BYTE name
and VAL PACKET args refer to the arguments input in the call, as handled in
Chapter 3 Table 5.6: name is the leftover, unspecific argument (remargv), and
args plus getargs refer to the specific arguments --q etcetera in the for loop.
Finally, BYTE exit is output by PROC sercomio and thus corresponds to the
one-byte exit value of a process, where 0 means success.

The main action, both in the pseudocode and in the C code, is in the
WHILE notdone loop. It is assumed that both kbd and serialin are pumping
input into the loop, so each of them continually gets a connel_read_start
right after its last input is finished. In the Windows case, that commits to the
next input that will affect WaitForMultipleObjects, while in the Linux case
(which does not use asynchronous IO) it does nothing but set some bits. Then
the key (ALT) step is connel_select which responds to the winner(s) of the
race. CONNEL_FINISH winds up the asynchronous read in the case of Windows,
and does the read in the case of Linux. So all of them taken together amount
to an ALT win.

Between the if (finish) and the connel_read_start in each response
branch to the connel_select is the “guts” of the ALT branch in the pseu-
docode. In more complex Connel code, done in proprietary work, this can get
quite extensive and have dependencies that involve the data flowing in from
both (or all) machines. In addition, the decision which connel_read_start to
trigger, if any, can become complex, and connel_deafen is the usual alternative
if a connel_read_start is not appropriate.

Thus, the communication-handling code, whose bulk completely dominates
this example, is not necessarily dominant in “real” cases. But its structure
remains basically the same. The most nonintuitive part of handling the C code
is the connel_read_start, which has to be called if the next ALT in the loop
is to have this communication as a live option. And if it’s not a live option, a
connel_deafen is probably appropriate.

5.3 tapper: a client/server system
This code refers to a server and up to two clients at any time. Here, as mentioned
before, Connel does not offer “spawning” and unlimited client spinoffs in the
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manner of standard sockets (as in [4], Chapter 13). Instead, the tapper.occ
server sets up a fixed number of named SOCKLOCAL channels, and clients
pick them up and set them down at will. This is actually more like what real
httpd daemons do in OS systems like Linux, and it avoids the “infinite = finite”
metaphor described in [2].

The history of this code is interesting. What was written first
was a set of single-OS programs like servecho.c for Linux and
[server|client]-win32-[console|echoer].c for Windows. These
were used to develop the SOCKLOCAL (CONNEL_TYPE =
CONNEL_NAMED_PIPE or CONNEL_SOCKET) code in Connel. Then
the pseudocode for an OS-independent version was written, and the catch/tap
code followed the pseudocode in C.

5.3.1 tapper.occ pseudocode as a secure firmware OS

The pseudocode program embraces all the OS entities that are needed to run
this simple client/server system.

People tend to think of an OS as a practically infinite bag of tricks, all of
which are needed for any programs to run. This is untrue, as is known by classic
programmers who are familiar with DOS. The important thing to remember
about DOS is that it is a self-sufficient embedded operating system—something
that has become essentially unknown since its day. That means: (a) it is capable
of doing everything that an OS needs to do, and (b) all of its code is on the
surface, and can be dumped as assembly that is both understandable and deals
with all the hardware. Since the 1990s you only have Deep OSs (with millions
of lines of code including hidden Ring 0 drivers) to satisfy (a), and embedded
cross-compilers like Arduino to satisfy (b). Most people do not even remember
that the original DOS PC ran an embedded CPU, the 8088 or 8086. And all of
its hardware interfaces were fully described in a small booklet ([1]).

The importance of this observation is that the design implied by tapper.occ
is perfectly capable of running in an embedded system, or even implying the
design of a stub OS that will permit design of an embedded system that can
be used to support flexible and changeable programming of this sort.

The lost art of a fully capable embedded OS is one of the most
important Wide Programming agenda items.

In the pseudocode of Table 5.2, two nonstandard types are used: TYPE and
COMMANDSTRING. This is an immediate clue that significant structural
information about the programming and response are carried in the “out-of-
band” parts of these types and their users. TYPE is essentially BYTE (from 0
through 255) with two out-of-band values, connecting and disconnecting.
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-- Version 2 supporting catch.c and tap.c using connel tools, which
-- require type[i] be used in place of type, as ALT target cannot
-- overlap with connel. Also check for ’x’ before quit.
VAL TYPE connecting IS -1 :
VAL TYPE disconnecting IS -2 :
VAL COMMANDSTRING exit IS "exit" :
-- The occam PROCs correspond to programs in an OS
... PROC catch(CHAN OF ANY kbd, scr, [2]CHAN OF ANY pipe)
... PROC tap(CHAN OF ANY kbd, scr, pipe)
-- The occam kbd and scr declarations correspond to command windows
[3]CHAN OF ANY kbd, scr : -- 3 windows must be open
-- The occam pipe declarations correspond to starting the catch early
-- and running setup code
[2]CHAN OF ANY pipe : -- 2 pipes or a pipe with 2 INSTANCEs
-- The occam PAR corresponds to running the programs
... main program
}}}

Table 5.2: View of tapper.occ in origami (top comments removed)

The CHAN OF ANY in the case of pipe[i] is a bit lazy: it could have been
CHAN OF TYPE. But kbd[i] and scr[i] alternate between TYPE, BYTE, and
COMMANDSTRING.

The number of pipes active in the server catch (Table 5.3) can be 0, 1, or
2. The ampersand expression in the ALT means that it listens to its keyboard
only when the count of active pipes is 0. That means this program is written
so that a shutdown requires all clients be disconnected.

The two out-of-band values of TYPE allow the server to keep track of
how many clients are connected, and to which pipes they are connected. The
server also displays the incoming (in-band) data. It’s not clear from the above
pseudocode that a client can’t talk unless it is connected, but that is implied
by the client code in Table 5.4.

The client tap is simpler than the server. The code in Table 5.4 implies
that each client session starts by sending connecting along the pipe, then zero
or more data bytes, and finally disconnecting. (The fact that it won’t send
another connecting is not obvious, but follows from the fact that kbd never
inputs a connecting value, although it is capable of inputting disconnecting—
a signal that is implementation-dependent.)

The main program (Table 5.5) illustrates two possible commands: exit, and
everything else as an alias for tap. The exit command is not to be confused
with the action of disconnect within a command. In fact, disconnect causes
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{{{ PROC catch(CHAN OF ANY kbd, scr, [2]CHAN OF ANY pipe)
PROC catch(CHAN OF ANY kbd, scr, [2]CHAN OF ANY pipe)

INT npipes :
BOOL notdone :
BYTE char :
[2]TYPE type : -- pseudocode
SEQ
npipes := 0
notdone := TRUE
WHILE notdone
-- The pipes take higher priority than the keyboard
-- Also, keyboard input is ignored unless both clients are
-- disconnected
ALT
ALT i FROM 0 FOR 2
pipe[i] ? type[i]
CASE type[i]
connecting
npipes := npipes + 1

disconnecting
npipes := npipes - 1

ELSE
scr ! type[i]

--END CASE
npipes = 0 & kbd ? char -- does not listen unless npipes = 0
IF
char = ’x’
notdone := FALSE -- forces termination

TRUE
scr ! char

--END IF got an ’x’ to signal termination
--END ALT

--END WHILE notdone
}}}

Table 5.3: The server program (corresponds to catch.c)
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{{{ PROC tap(CHAN OF ANY kbd, scr, pipe)
PROC tap(CHAN OF ANY kbd, scr, pipe)

BOOL notdone :
BYTE char :
TYPE type :
SEQ

notdone := TRUE
pipe ! connecting
WHILE notdone

SEQ
kbd ? type
pipe ! type -- disconnecting is the Linux signal, not ’x’
notdone = ( type <> disconnecting ) -- <> is occam !=
IF

notdone
scr ! type

TRUE
SKIP

--END WHILE notdone
}}}

Table 5.4: The client program (corresponds to tap.c)

a “program run” (i.e. tap) to shut down, and moves to the stable state,
kbd[i] ? command. There, the main program (not to be confused with the
server) waits patiently for the user to enter the next command. While it is in
this state, its pipe is disconnected from the server.

Thus, normal termination is to disconnect any running instances of tap,
to enter exit as the next command for each such instance, and to kill the
instance of catch by using the keyboard which has become available there
since no pipes are connected.

This DOS-like but limited-program-list OS model is very good for computer
security. It is applicable on any level of programming, including firmware,
drivers, and Ring 0. More flexible than a monolithic firmware burn, it still
allows only a finite list of code sequences to be executed.

5.3.2 tap.c—a client

This is the C code for the tapper client, using a SOCKLOCAL. It starts and
opens up communication using a pre-existing connel (a named pipe in Windows,
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{{{ main program
PAR
-- Because connecting is the first communication from an
-- instance of tap, and disconnecting is the last, catch has a
-- running count of currently open taps, and will not shut
-- down unless both taps are shut down. To make it absolutely
-- robust, the "exit" command for a tap should be required to
-- send a special signal before catch shuts down (not done
-- here). Either that, or exit should cause something to stay
-- open until it receives a signal from catch that says it is
-- shutting down (requires extra channels). Neither is done
-- here, which would allow a tap to come on line and hang
-- because the catch got signaled to go away.
catch(kbd[2], scr[2], pipe)
-- The subsidiary PAR corresponds to running and closing
-- programs at will. This is possible with an OS.
PAR i FROM 0 FOR 2
-- At this point is one of the client windows
COMMANDSTRING command : -- pseudocode
SEQ

kbd[i] ? command
WHILE command <> exit
SEQ

tap(kbd[i], scr[i], pipe[i])
kbd[i] ? command

--END WHILE command <> exit
--END PAR i FROM 0 FOR 2

--END PAR
}}}

Table 5.5: Main program for tapper (server/client system)

192



5.3. tapper: a client/server system

or a socket in Linux).
I am dealing with the client first, because it is simpler than the server, and

closer to sercomio, the Connel program detailed in Chapter 2. Like sercomio it
is dominated by harness code, the Wide “piping” superstructure that handles
data flow and timing. In fact, the similarity is so strong that the best approach is
to proceed through the code, block by block, in parallel with that of sercomio,
and compare them.

The tap.c toplevel in Table 5.6 is actually shorter than the sercomio
toplevel in Chapter 3 Table 3.4. It eliminates two global functions, ctrlc and
legalize, a lot of standard arguments, and the remarg argument filter, while
adding the standard OS-dependent #define SOCKLOCAL and a namein prefix
"tapper". These are all important program features, which tend to blow by
due to the huge volume of hardly-varying Connel calls.

You will note that the five major fold titles are substantially unchanged
from those of sercomio. This is a crude way of hinting that I do a lot of cutting
and pasting!

In the connel declarations (Table 5.7), the only change is to exchange serial
for pipe in connel names and pointers, and mserinp for mpipe in machine
name and pointer. This implies, fairly enough, that the SOCKLOCAL pipe
will take the place of the serial connection. That can work in detail, because
according to the pseudocode, there is only one connect and only one disconnect
per client session, and they are at the beginning and end, respectively.

The handling (Table 5.8) of the input arguments is much simpler for tap.
There is merely a digit, 0 or 1, which when appended to the prefix tapper
gives the correct filename of an already existing SOCKLOCAL. Of course, a
real application can be more extensive (a count of around 10 simultaneous
clients is typical of Linux httpd daemon usage).

Table 5.9 is nearly identical with REAL CODE BEGINS (Connel setup
code) in sercomio, except that the place of scr with respect to the non-STD
connel is reversed.

Tables 5.10, 5.11, and 5.12 are identical with Chapter 3 Tables 3.8, 3.9,
and 3.11 respectively. Table 5.13 compares to Chapter 3 Table 3.10 for the non-
STD connel. The big difference is that sercomio added a machine for serial,
while tap omits the machine, even though its space was reserved (an oversight).
This is because the client in tapper only outputs, never inputs. A more general
server/client implementation would be bidirectional, like sercomio.

An invisible difference is that the connel_open call for a SOCKLOCAL
carries out a C connect. This corresponds to transmitting the TYPE value
connecting in the pseudocode, and blocks until the server does a C accept.
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/*
* This one functions as a client sending to SOCKLOCAL pname[i]
* and receiving from the keyboard. Start it AFTER catch.c.
*/

#ifndef CONNEL_LINUX
#define CONNEL_WINDOWS
#else
#undef CONNEL_WINDOWS
#endif
#ifdef CONNEL_WINDOWS
#include "..\LAZM\connel.h"
#define SOCKLOCAL CONNEL_NAMED_PIPE
#else
#include "../LAZM/connel.h"
#define SOCKLOCAL CONNEL_SOCKET
#endif
#define LNAMEOUT 200
int main(int argc, char *argv[])
{

char namein[20] = "tapper";
char nameout[LNAMEOUT];
char *pname;
int ret;
... declare connel structs and their pointers
... introduce test program self
... REAL CODE BEGINS
... DO THE ACTION
... END
return 0;

}
}}}

Table 5.6: View of tap.c in origami (top comments removed)
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{{{ declare connel structs and their pointers
connel_list_t scl;
connel_list_t *cl = &scl;
connel_set_t scs;
connel_set_t *cs = &scs;
connel_t sckbd, scscr, scpipe;
connel_t *ckbd = &sckbd;
connel_t *cscr = &scscr;
connel_t *cpipe = &scpipe;
connel_machine_t scmkbd, scmpipe;
connel_machine_t *cmkbd = &scmkbd;
connel_machine_t *cmpipe = &scmpipe;
}}}

Table 5.7

{{{ introduce test program self
#ifdef CONNEL_LINUX
printf("Linux test case\n");
#else
printf("Windows test case\n");
#endif
CONNEL_DINFO("sizeof(connel_t) is %d.\n", sizeof(connel_t));
CONNEL_DINFO("sizeof(connel_list_t) is %d.\n", sizeof(connel_list_t));
CONNEL_DINFO("sizeof(connel_machine_t) is %d.\n", sizeof(connel_machine_t));
CONNEL_DINFO("sizeof(connel_set_t) is %d.\n", sizeof(connel_set_t));
CONNEL_DINFO("sizeof(connel_timeout_t) is %d.\n", sizeof(connel_timeout_t));
if ((argc>1)&&(strlen(argv[1])==1)) {

strcat(namein, argv[1]);
} else {

CONNEL_DINFO("Syntax: tap <single digit number>\n");
exit(1);

}
CONNEL_MAKENAME(SOCKLOCAL, LNAMEOUT, namein, nameout, pname);
if (pname) CONNEL_DINFO("Concocted name: %s\n", pname);
}}}

Table 5.8
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{{{ REAL CODE BEGINS
/* REAL CODE BEGINS */
... init list and set
... kbd begin, open, machine begin, add
... scr begin and open
... pipe begin and open
}}}

Table 5.9

{{{ init list and set
ret = connel_list_init(cl);
CONNEL_DINFO("connel_list_init returned %d\n", ret);
ret = connel_set_init(cs);
CONNEL_DINFO("connel_set_init returned %d\n", ret);
}}}

Table 5.10

{{{ kbd begin, open, machine begin, add
ret = connel_begin(cl, ckbd);
CONNEL_DINFO("connel_begin(cl, ckbd) returned %d\n", ret);
ret = connel_open(CONNEL_STD, NULL, CONNEL_READ_BIT, ckbd);
CONNEL_DINFO("connel_open(%d, NULL, %d, ckbd) returned %d\n",
CONNEL_STD, CONNEL_READ_BIT, ret);

ret = connel_machine_begin(ckbd, cmkbd, 0);
CONNEL_DINFO("connel_machine_begin(ckbd, cmkbd, 0) returned %d\n", ret);
ret = connel_machine_add(cs, cmkbd);
CONNEL_DINFO("connel_machine_add(cs, cmkbd) returned %d\n", ret);
}}}

Table 5.11

{{{ scr begin and open
ret = connel_begin(cl, cscr);
CONNEL_DINFO("connel_begin(cl, cscr) returned %d\n", ret);
ret = connel_open(CONNEL_STD, NULL, CONNEL_WRITE_BIT, cscr);
CONNEL_DINFO("connel_open(%d, NULL, %d, cscr) returned %d\n",
CONNEL_STD, CONNEL_WRITE_BIT, ret);

}}}

Table 5.12

196



5.3. tapper: a client/server system

{{{ pipe begin and open
ret = connel_begin(cl, cpipe);
CONNEL_DINFO("connel_begin(cl, cpipe) returned %d\n", ret);
ret = connel_open(SOCKLOCAL, pname, CONNEL_READ_BIT, cpipe);
CONNEL_DINFO("connel_open(%d, %s, %d, cpipe) returned %d\n",

SOCKLOCAL, pname, CONNEL_READ_BIT, ret);
}}}

Table 5.13

{{{ DO THE ACTION
/* DO THE ACTION */
{

char thechar = ’#’;
int notdone;
... listen kbd
if (notdone) {

... first read_start and notdone if success
}
while (notdone) {

unsigned long newready = 0;
ret = connel_select(cs, NULL, &newready);
CONNEL_DINFO(

"connel_select(cs, NULL, &newready) output %ld, returned %d\n",
newready, ret);

... keyboard response, pipe out and read_start or notdone:=FALSE
}
... deafen kbd

}
}}}

Table 5.14

After that, the client is released to continue communication just as if a serial
connection or Transputer link were set up.

The active part (Table 5.14) of the program, corresponding to the part
of pseudocode after pipe ! connecting, is structured like that in sercomio.
First, connel_listen is called for relevant machines (the ones with TRUE or
implied Booleans in the ALT), and connel_read_start is called for each of
these. (It is enclosed in a notdone branch because the listen can fail.) After
that, the WHILE loop is the same as in the pseudocode.

The listen and the read_start (Tables 5.15 and 5.16) are similar to those in
sercomio, except for only one machine instead of two. If the client had been
bidirectional, the SOCKLOCAL machine would have been serviced too.
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{{{ listen kbd
ret = connel_machine_listen(cmkbd, 0);
CONNEL_DINFO("connel_machine_listen(cmkbd, 0) returned %d\n", ret);
if (ret<1) {

ret = connel_machine_listen(cmkbd, 1);
CONNEL_DINFO("connel_machine_listen(cmkbd, 1) returned %d\n", ret);

}
notdone = (ret > 0);
}}}

Table 5.15

{{{ first read_start and notdone if success
ret = connel_read_start(cmkbd, &thechar, 1, 1);
CONNEL_DINFO(

"connel_read_start(cmkbd, &thechar, 1, 1) returned %d\n", ret);
notdone = (ret > 0);
CONNEL_DINFO("nbytes %d ndone %d\n",

cmkbd->cm_nbytes, cmkbd->cm_ndone);
}}}

Table 5.16

In Table 5.17, the keyboard response is simpler than that in sercomio
because of the lack of options. However, the minimal tests with newready and
CONNEL_FINISH are still there.

Actually, this code is more complex than it needs to be. With only one
input and no timeouts, it could all be done with synchronous reads in place of
the select.

In Table 5.18, as usual, the connel_deafen call is made to happen when
the connel_read_start did not happen. Thus, in every case, you get a
connel_listen, followed by a number (perhaps zero) of connel_read_start—
connel_select win—CONNEL_FINISH sequences, followed by a connel_deafen.

The END, in Table 5.19, consists as usual of connel_close calls that
are symmetrical with the connel_open calls. These are nested outside
the listen/deafen pairs, if applicable, which in turn are nested outside the
read_start/select win/FINISH triplets.
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{{{ keyboard response, pipe out and read_start or notdone:=FALSE
if ((ret > 0)&&(newready&1)) {
unsigned long finish = 0;
notdone = 0;
CONNEL_FINISH(cs, 0, finish);
CONNEL_DINFO(
"CONNEL_FINISH(cs, 0, finish) returned finish = 0x%lX\n",
finish);

if (finish) {
CONNEL_DINFO("============= KEY byte: 0x%02X %c\n",
(int)thechar, thechar);

notdone = (thechar != ’x’);
if (notdone) {
connel_write(cpipe, &thechar, 1);
CONNEL_DINFO(" PIPE output KEY byte.\n");
ret = connel_read_start(cmkbd, &thechar, 1, 1);
CONNEL_DINFO(

"connel_read_start(cmkbd, &thechar, 1, 1) returned %d\n", ret);
}

}
}
}}}

Table 5.17

{{{ deafen kbd
ret = connel_machine_deafen(cmkbd, 0);
CONNEL_DINFO("connel_machine_deafen(cmkbd, 0) returned %d\n", ret);
if (ret<1) {
ret = connel_machine_deafen(cmkbd, 1);
CONNEL_DINFO("connel_machine_deafen(cmkbd, 1) returned %d\n", ret);

}
}}}

Table 5.18
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{{{ END
/* END */
ret = connel_close(cpipe);
CONNEL_DINFO("connel_close(cpipe) returned %d\n", ret);
ret = connel_close(cscr);
CONNEL_DINFO("connel_close(cscr) returned %d\n", ret);
ret = connel_close(ckbd);
CONNEL_DINFO("connel_close(ckbd) returned %d\n", ret);
}}}

Table 5.19

5.3.3 catch.c—a server

This is the C code for a server using SOCKLOCALs. It starts and creates two
connels (named pipes in Windows, or sockets in Linux). Clients can pick these
up and use them—at most two at a time.

This code is examined with both sercomio.c and tap.c in mind. It is more
complex than these, for several reasons. First, it includes part of the outdented
declaration code of the pseudocode, just as seen in Chapter 3 Table 3.1. This is
implemented by connel_create calls. Second, it deals in full with the response
to the out-of-band TYPEs, connecting and disconnecting. Thus its Connel
structure is more complex. Finally, it deals with an array of SOCKLOCALs
which can be operational in arbitrary order.

In another way, catch.c is more like sercomio.c: it has more than one
machine in its ALT. In fact, here we deal with a replicated ALT array.

Compared with the top view of tap.c, one significant feature is found
in Table 5.20: a state machine (actually an array of two state machines,
one for each SOCKLOCAL) with the values DISCONNECTED, CONNECT-
ING, and READING. In addition, both link names (tapper0 and tapper1)
are explicitly listed. This corresponds to part of the implementation of
[2]CHAN OF ANY pipe : in the outer declarations of the pseudocode.

In the declarations in Table 5.21, as would be expected, the key difference
is an array of two connels and two corresponding input machines.

No program call arguments are expected in Table 5.22, because the server
“knows” all the possible names of its connels.

Nothing unexpected happens in Tables 5.23 through 5.27, although Ta-
ble 5.26 shows a new feature: an array loop for the array of two connels,
and a connel_create call for each of them, instead of the connel_open
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/*
* This one functions as a server receiving from SOCKLOCAL
* pname[i] as well as from the keyboard. Start it BEFORE tap.c.
*/
#ifndef CONNEL_LINUX
#define CONNEL_WINDOWS
#else
#undef CONNEL_WINDOWS
#endif
#ifdef CONNEL_WINDOWS
#include "..\LAZM\connel.h"
#define SOCKLOCAL CONNEL_NAMED_PIPE
#else
#include "../LAZM/connel.h"
#define SOCKLOCAL CONNEL_SOCKET
#endif
#define LNAMEOUT 200
#define DISCONNECTED 0
#define CONNECTING 1
#define READING 2
int main(int argc, char *argv[])
{

char namein[2][8] = {"tapper0","tapper1"};
char nameout[2][LNAMEOUT];
char *pname[2];
int pstate[2] = {DISCONNECTED, DISCONNECTED};
int i, ret;
... declare connel structs and their pointers
... introduce test program self
... REAL CODE BEGINS
... DO THE ACTION
... END
return 0;

}
}}}

Table 5.20: View of catch.c in origami (top comments removed)
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{{{ declare connel structs and their pointers
connel_list_t scl;
connel_list_t *cl = &scl;
connel_set_t scs;
connel_set_t *cs = &scs;
connel_t sckbd, scscr, scpipe[2];
connel_t *ckbd = &sckbd;
connel_t *cscr = &scscr;
connel_t *cpipe[2] = {scpipe, scpipe+1};
connel_machine_t scmkbd, scmpipe[2];
connel_machine_t *cmkbd = &scmkbd;
connel_machine_t *cmpipe[2] = {scmpipe, scmpipe+1};
}}}

Table 5.21

{{{ introduce test program self
#ifdef CONNEL_LINUX
printf("Linux test case\n");
#else
printf("Windows test case\n");
#endif
CONNEL_DINFO("sizeof(connel_t) is %d.\n", sizeof(connel_t));
CONNEL_DINFO("sizeof(connel_list_t) is %d.\n", sizeof(connel_list_t));
CONNEL_DINFO("sizeof(connel_machine_t) is %d.\n", sizeof(connel_machine_t));
CONNEL_DINFO("sizeof(connel_set_t) is %d.\n", sizeof(connel_set_t));
CONNEL_DINFO("sizeof(connel_timeout_t) is %d.\n", sizeof(connel_timeout_t));
for (i=0; i<2; i++) {

CONNEL_MAKENAME(SOCKLOCAL, LNAMEOUT, namein[i], nameout[i], pname[i]);
if (pname) CONNEL_DINFO("Concocted name: %s\n", pname[i]);

}
}}}

Table 5.22

{{{ REAL CODE BEGINS
/* REAL CODE BEGINS */
... init list and set
... kbd begin, open, machine begin, add
... pipes begin, create, machine begin, add
... scr begin and open
}}}

Table 5.23
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{{{ init list and set
ret = connel_list_init(cl);
CONNEL_DINFO("connel_list_init returned %d\n", ret);
ret = connel_set_init(cs);
CONNEL_DINFO("connel_set_init returned %d\n", ret);
}}}

Table 5.24

{{{ kbd begin, open, machine begin, add
ret = connel_begin(cl, ckbd);
CONNEL_DINFO("connel_begin(cl, ckbd) returned %d\n", ret);
ret = connel_open(CONNEL_STD, NULL, CONNEL_READ_BIT, ckbd);
CONNEL_DINFO("connel_open(%d, NULL, %d, ckbd) returned %d\n",

CONNEL_STD, CONNEL_READ_BIT, ret);
ret = connel_machine_begin(ckbd, cmkbd, 0);
CONNEL_DINFO("connel_machine_begin(ckbd, cmkbd, 0) returned %d\n", ret);
ret = connel_machine_add(cs, cmkbd);
CONNEL_DINFO("connel_machine_add(cs, cmkbd) returned %d\n", ret);
}}}

Table 5.25

{{{ pipes begin, create, machine begin, add
for (i=0; i<2; i++) {

ret = connel_begin(cl, cpipe[i]);
CONNEL_DINFO("connel_begin(cl, cpipe[%d]) returned %d\n", i, ret);
ret = connel_create(SOCKLOCAL, pname[i], CONNEL_READ_BIT, cpipe[i]);
CONNEL_DINFO("connel_create(%d, %s, %d, cpipe[%d]) returned %d\n",

SOCKLOCAL, pname[i], CONNEL_READ_BIT, i, ret);
ret = connel_machine_begin(cpipe[i], cmpipe[i], 0);
CONNEL_DINFO(

"connel_machine_begin(cpipe[%d], cmpipe[%d], 0) returned %d\n",
i, i, ret);

ret = connel_machine_add(cs, cmpipe[i]);
CONNEL_DINFO(

"connel_machine_add(cs, cmpipe[%d]) returned %d\n", i, ret);
}
}}}

Table 5.26
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{{{ scr begin and open
ret = connel_begin(cl, cscr);
CONNEL_DINFO("connel_begin(cl, cscr) returned %d\n", ret);
ret = connel_open(CONNEL_STD, NULL, CONNEL_WRITE_BIT, cscr);
CONNEL_DINFO("connel_open(%d, NULL, %d, cscr) returned %d\n",

CONNEL_STD, CONNEL_WRITE_BIT, ret);
}}}

Table 5.27

met with in tap.c and sercomio.c. This finishes the implementation of
[2]CHAN OF ANY pipe : in the outer declarations of the pseudocode. The
analogy to a declared channel in the pseudocode is a created SOCKLOCAL in
the OS’s file system: a named pipe if Windows, and a socket if Linux.

The connel_create also does the equivalent of a connel_open, placing
the server-side SOCKLOCAL in a listening state. It’s worth noting here that
there is nothing intrinsic about tapper’s restriction to client writing and server
reading. I could have allowed both, with a somewhat more complicated state
machine, but the read-only server is enough to demonstrate the key feature of
a SOCKLOCAL: its ability to connect and disconnect.

The toplevel ACTION code in Table 5.28 shows a new kind of communica-
tion, one that is found on SOCKLOCALs but not on serial or STD connels.
This is the connect input, which is different from a read in C, but is expressed
by an out-of-band input in pseudocode. There is also a disconnect input,
handled differently from either read or connect in C, and not yet visible in
this fold. The reason it is not visible is that, once the pipe has entered the
connel_listen state (which is to be distinguished from the C listen state),
it does not leave it, even when its clients disconnect. All it does is to change
what it is listening for: a C connect, or a read.

The connel_connect_start calls found in Table 5.30 are to be called
when a server SOCKLOCAL is in state DISCONNECTED. They actually
correspond to the C accept call. Once the connect has started, the server
SOCKLOCAL is in the state CONNECTING, which will last until it wins the
ALT and receives either a connection or a disconnection. That will put it in
state READING or DISCONNECTED respectively.

This contrasts with kbd in Table 5.31, which as a STD only has a
connel_read_start call. This is legitimate according to the pseudocode, since
npipes = 0.

Table 5.31 is a standard keyboard response. Notice that the bit in newready
that corresponds to the keyboard depends on the order in which machines are
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{{{ DO THE ACTION
/* DO THE ACTION */
{

int npipes = 0;
char keychar = ’#’;
char pipechar[2] = "&&";
int notdone;
... listen kbd, pipes, set notdone if successful
... start read on kbd and connect on both pipes
while (notdone) {

int wasnpipes = npipes; /* whether kbd deaf coming in */
unsigned long newready = 0;
ret = connel_select(cs, NULL, &newready);
CONNEL_DINFO(

"connel_select(cs, NULL, &newready) output %ld, returned %d\n",
newready, ret);

newready |= cs->cs_ready;
if (ret > 0) {

... kbd response
for (i=0; i<2; i++) {

int ind = i + 1;
... pipe[i] response

}
... change state of deaf or listening as appropriate

}
}
... deafen pipes, and if necessary, kbd

}
}}}

Table 5.28

added. The response code does not test for whether the ALT kbd line is deaf,
since connel_select itself will not be responsive under those conditions, and
newready will never show kbd ready.

Table 5.32 below is a pipe[i] response (in a replicated ALT) which has
new features. Unlike the pseudocode, the C code must be explicitly clear
about state. Any ALT win must be checked for disconnection, as this can
happen either when a read was expected or when a connect was expected.
CONNEL_STATE_SERVER_DISCONNECTED_BIT is the sign, and always forces the
pipe into state DISCONNECTED, while if it is absent, then the pipe goes into
(or stays in) state READING. A disconnection happens when the client closes
its end of the pipe.

In either case, the pipe remains ready to hear. However, in all cases (kbd
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{{{ listen kbd, pipes, set notdone if successful
ret = connel_machine_listen(cmkbd, 0);
CONNEL_DINFO("connel_machine_listen(cmkbd, 0) returned %d\n", ret);
if (ret<1) {

ret = connel_machine_listen(cmkbd, 1);
CONNEL_DINFO("connel_machine_listen(cmkbd, 1) returned %d\n", ret);

}
for (i=0; i<2; i++) {

if (ret > 0) {
ret = connel_machine_listen(cmpipe[i], 0);
CONNEL_DINFO(

"connel_machine_listen(cmpipe[%d], 0) returned %d\n", i, ret);
if (ret<1) {

ret = connel_machine_listen(cmpipe[i], 1);
CONNEL_DINFO(

"connel_machine_listen(cmpipe[%d], 1) returned %d\n", i, ret);
}

}
}
notdone = (ret > 0);
}}}

Table 5.29

{{{ start read on kbd and connect on both pipes
if (notdone) {

int rets[2];
ret = connel_read_start(cmkbd, &keychar, 1, 1);
CONNEL_DINFO(

"connel_read_start(cmkbd, &keychar, 1, 1) returned %d\n", ret);
CONNEL_DINFO("nbytes %d ndone %d\n",

cmkbd->cm_nbytes, cmkbd->cm_ndone);
for (i=0; i<2; i++) {

rets[i] = connel_connect_start(cmpipe[i], 1);
CONNEL_DINFO(

"connel_connect_start(cmpipe[%d], 1) returned %d\n",
i, rets[i]);

if (rets[i] > 0) pstate[i] = CONNECTING;
}
notdone = (ret > 0)||(rets[0] > 0)||(rets[1] > 0);

}
}}}

Table 5.30
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{{{ kbd response
if (newready&1) {

unsigned long finish = 0;
CONNEL_FINISH(cs, 0, finish);
CONNEL_DINFO(

"CONNEL_FINISH(cs, 0, finish) returned finish = 0x%lX\n",
finish);

if (finish) {
int knotdone;
CONNEL_DINFO(" KBD INPUT WAS <%c>\n", keychar);
knotdone = (keychar != ’x’);
if (knotdone) {

ret = connel_read_start(cmkbd, &keychar, 1, 1);
CONNEL_DINFO(

"connel_read_start(cmkbd, &keychar, 1, 1) returned %d\n", ret);
knotdone = (ret >= 0);

}
notdone = (notdone && knotdone);

}
}
}}}

Table 5.31

or pipe[i]), reception of the kill character causes everything to shut down,
gracefully or not.

Tables 5.33–5.35 use connel_listen and connel_deafen to respond ac-
cording to the pseudocode to the current count of live pipe connections. These
implement the Boolean part of the ALT guard. Notice that only kbd is deafened.

Table 5.36 is executed only when catch is committed to terminating.
Table 5.37 is the usual close procedure, mirroring the create/open sequence.

5.4 sockspy: a channel spy program
The next example is a very useful tool: sockspy. It works, one byte at a time,
as a channel spy. The structure is very simple (see Figure 5.1), and is based on
the SOCKLOCAL character of a server and a single client at any point of time.
In the SOCKLOCAL design, both the server process and the bidirectional
connel must pre-exist any run of a client. This means an “extension cord” such
as sockspy can always be placed between the server and its connel, on the one
hand, and its client on the other.
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{{{ pipe[i] response
if (newready&(((unsigned long)1)<<ind)) {

unsigned long finish = 0;
CONNEL_FINISH(cs, ind, finish);
CONNEL_DINFO(

"CONNEL_FINISH(cs, %d, finish) returned finish = 0x%lX\n",
ind, finish);

if (finish) {
int pnotdone;
if ((cpipe[i]->c_state)&(~CONNEL_STATE_SERVER_DISCONNECTED_BIT)) {

if (pstate[i]!=READING) npipes++;
pstate[i] = READING;

} else {
if (pstate[i]==READING) npipes--;
pstate[i] = DISCONNECTED;

}
if (pstate[i]==READING) {

if (cpipe[i]->c_laststart&CONNEL_READ_BIT)
CONNEL_DINFO("PIPE[%d] INPUT WAS <%c>\n", i, pipechar[i]);

pnotdone = (pipechar[i] != ’x’);
if (pnotdone) {

ret = connel_read_start(cmpipe[i], pipechar+i, 1, 1);
CONNEL_DINFO(

"connel_read_start(cmpipe[%d], &pipechar[%d], 1, 1) returned %d\n",
i, i, ret);

pnotdone = (ret >= 0);
}

} else {
ret = connel_connect_start(cmpipe[i], 1);
CONNEL_DINFO(

"connel_connect_start(cmpipe[%d], 1) returned %d\n",
i, ret);

if (ret > 0) pstate[i] = CONNECTING;
pnotdone = (ret >= 0);

}
notdone = (notdone && pnotdone);

}
}
}}}

Table 5.32
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{{{ change state of deaf or listening as appropriate
if (wasnpipes != npipes) {

CONNEL_DINFO("CHANGED NUMBER OF CONNECTIONS FROM %d TO %d\n",
wasnpipes, npipes);

if (wasnpipes>0) {
if (npipes<1) {

... start listening to kbd
}

} else if (npipes>0) {
... stop listening to kbd

}
}
}}}

Table 5.33

{{{ start listening to kbd
ret = connel_machine_listen(cmkbd, 0);
CONNEL_DINFO("connel_machine_listen(cmkbd, 0) returned %d\n",

ret);
if (ret<1) {

ret = connel_machine_listen(cmkbd, 1);
CONNEL_DINFO("connel_machine_listen(cmkbd, 1) returned %d\n",

ret);
}
}}}

Table 5.34

{{{ stop listening to kbd
ret = connel_machine_deafen(cmkbd, 0);
CONNEL_DINFO("connel_machine_deafen(cmkbd, 0) returned %d\n",

ret);
if (ret<1) {

ret = connel_machine_deafen(cmkbd, 1);
CONNEL_DINFO("connel_machine_deafen(cmkbd, 1) returned %d\n",

ret);
}
}}}

Table 5.35
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{{{ deafen pipes, and if necessary, kbd
for (i=1; i>=0; i--) {

ret = connel_machine_deafen(cmpipe[i], 0);
CONNEL_DINFO(

"connel_machine_deafen(cmpipe[%d], 0) returned %d\n", i, ret);
if (ret<1) {

ret = connel_machine_deafen(cmpipe[i], 1);
CONNEL_DINFO(

"connel_machine_deafen(cmpipe[%d], 1) returned %d\n", i, ret);
}

}
if (npipes<1) {

ret = connel_machine_deafen(cmkbd, 0);
CONNEL_DINFO("connel_machine_deafen(cmkbd, 0) returned %d\n", ret);
if (ret<1) {

ret = connel_machine_deafen(cmkbd, 1);
CONNEL_DINFO("connel_machine_deafen(cmkbd, 1) returned %d\n", ret);

}
}
}}}

Table 5.36

{{{ END
/* END */
ret = connel_close(cscr);
CONNEL_DINFO("connel_close(cscr) returned %d\n", ret);
ret = connel_close(cpipe[1]);
CONNEL_DINFO("connel_close(cpipe[1]) returned %d\n", ret);
ret = connel_close(cpipe[0]);
CONNEL_DINFO("connel_close(cpipe[0]) returned %d\n", ret);
ret = connel_close(ckbd);
CONNEL_DINFO("connel_close(ckbd) returned %d\n", ret);
}}}

Table 5.37
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Figure 5.1: SERVER==( >SOCKSPY==( >CLIENT

-- sockspy
VAL INT DISCONNECTED IS 0 :
VAL INT CONNECTING IS 1 :
VAL INT READING IS 2 :
VAL INT SPY.BREAK IS 0 :
VAL INT SPY.SERVER IS 1 :
VAL INT SPY.CLIENT IS 2 :
VAL TYPE connecting IS -1 :
VAL TYPE disconnecting IS -2 :
VAL COMMANDSTRING exit IS "exit" :
... PROC sockspy(CHAN OF ANY kbd, scr, pipeS, pipeD, VAL BOOL isnotext)
... main program together with client(s) of pipeD
}}}

Table 5.38: View of sockspy.occ in origami (top comments removed)
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The exhibits of code for this and following programs will focus
on the pseudocode. The C code is very bulky, and follows the pseudocode
in essential organization. I will touch the “high spots” and new features of
the C in passing. The actual C code is available as part of the Connel source
distribution, plus the special header file LAZMcmnt.h.

5.4.1 Coding details of sockspy

The server and its connel (pipeS) are started first; then sockspy starts, connects
to pipeS as a client, and starts the diagnostic connel pipeD as a server; finally,
the original client connects to pipeD. The pipeD connel “looks like” a direct
pipeS connection to the client (or clients: for clients can terminate and new
ones start in the quasi-OS behavior described above for tapper).

Not shown in the pseudocode is the calling sequence of sockspy:
sockspy <pipeSname> <pipeDname> [--notext] where the names are of the
SOCKLOCAL connels (sockets or named pipes) in the file system. pipeS must
pre-exist and pipeD will be created. --notext resets the Boolean doText to
FALSE.

Looking at Table 5.38, a new state machine is seen: the spy state, which can
be SPY.BREAK, SPY.SERVER, or SPY.CLIENT. This refers to sockspy’s
very simple operation, which when a client is connected merely captures data
from either side, one byte at a time, and passes it to the other. The last sender
of data (server or client) then determines SPY.SERVER or SPY.CLIENT. The
other state, SPY.BREAK, refers to times when no client is connected.

Table 5.39 includes a non-occam pseudocode innovation which is related to
the actual behavior of connel_select: the ALTALL block, which is merely a
PRI ALT block in which all the ready branches are executed in sequence. This is
actually natural for most implementations of select, since they return a bitmap
showing every branch that is ready. Since wasConnectedD and triggerD refer
only to the last (pipeD) branch, the ALTALL is actually substantially equivalent
to an ordinary PRI ALT, but is slightly more efficient, and corresponds to the
sockspy.c code as it actually exists.

Another minor violation of the occam standard is in the CHAN formals, of
which pipeS and pipeD are bidirectional. I finesse this by the connel.machine
definitions which split away an input channel, leaving the formals for use only
for output. This also follows what actually happens in the C code.

The argument --notext is expressed as isnotext; there is a compile
parameter DEBUG seen in the C code also. A new Connel call is introduced here:
connel_timebase, which reads a clock value to connel_timeout_t sctstart,
using its pointer. This is represented by INT tstart in the pseudocode.
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{{{ PROC sockspy(CHAN OF ANY kbd, scr, pipeS, pipeD, VAL BOOL isnotext)
PROC sockspy(CHAN OF ANY kbd, scr, pipeS, pipeD, VAL BOOL isnotext)

CHAN OF ANY pipeSin IS connel.machine(pipeS) :
CHAN OF ANY pipeDin IS connel.machine(pipeD) :
VAL BOOL doText IS (NOT isnotext) :
TIMER clock :
INT tstart : -- time
INT pstateD :
INT discobufferind :
[1024]BYTE discobuffer : -- for when disconnected down
INT spy.state : -- state machine tracking
BYTE requestK, requestS : -- flow data 1 byte at a time
TYPE requestD : -- BYTE, or out-of-band "connecting" "disconnecting"
BOOL notQuiet, disconnectedD, notdone :
SEQ

... setup
WHILE notdone

BOOL wasConnectedD, triggerD :
SEQ

wasConnectedD := NOT disconnectedD -- recorded at top of loop!
triggerD := FALSE -- if TRUE by pipeD loopend, start will happen
ALTALL -- this is a PRI ALT that does all its ready branches

kbd ? requestK
... kbd response

pipeSin ? requestS
... pipeS response

pipeDin ? requestD -- can be connecting or disconnecting
... pipeD response

-- deafen machines and close connels
}}}

Table 5.39

{{{ setup
pstateD := DISCONNECTED
clock ? tstart
discobufferind := 0
notQuiet := DEBUG -- compile parameter
requestK, requestS, requestD := ’#’, ’#’, TYPE ’#’
spy.state := SPY.BREAK -- state
disconnectedD := TRUE
-- turn on machines here; do listen and read_start (kbd and pipeS)
-- and connect_start (pipeD); can’t be connected until ALT
pstateD := CONNECTING -- assume success
notdone := TRUE -- assume success (does NOT imply pipeD client ready)
}}}

Table 5.40
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{{{ kbd response
SEQ

IF
VALID.K(kbd)

notdone := (requestK <> ’x’)
FINISHED.K(kbd)

notdone := FALSE -- SHOULD NEVER HAPPEN
TRUE

SKIP
spy.state := SPY.BREAK

}}}

Table 5.41

The index discobufferind points into a 1024-byte array that absorbs
input from the server if there is currently no client to send it to. The other
state machines are obvious: spy.state is at SPY.BREAK because no client is
yet attached; disconnectedD is TRUE for the same reason.

A comment refers to a section of C code that starts the machines running,
even before any client has necessarily communicated. Then pstateD turns to
CONNECTING and notdone (assuming success) is TRUE. The support of
pstateD, which harks back to pstate[i] in tapper and catch.c, is actually
not needed here, as current and former values of disconnectedD will serve the
same purpose.

Harking back to Table 5.39, a WHILE notdone loop is found and two
Booleans, wasConnectedD and triggerD, are declared for every loop instance.
As mentioned above, they relate to activity of pipeD, which can input the
two out-of-band values, connecting and disconnecting. To the C code these
amount to signals, each handled in its own way. Most important at the top of
the loop is that wasConnectedD gives the connectedness state of pipeD at this
time, before the connel_select fires. This is FALSE if pstateD is CONNECT-
ING and TRUE if it is READING. The state of DISCONNECTED is excluded
by notdone because under normal operation either a connel_connect_start
or a connel_read_start has just succeeded. (The connel_connect_start
happens as soon as a disconnection is detected, returning immediately, requiring
following selects to try patiently for a new client.)

Immediately after this comes the ALTALL block which occupies the rest of
the WHILE loop. It responds to input on keyboard or from server (pipeS)
or client (pipeD) connel. For keyboard or server this input is a byte, but for
client if CONNECTING it is either a connection or a disconnection, and if
READING it is either a byte or a disconnection.
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Table 5.41 shows the response to a local keystroke. For the sake of pseu-
docode, FINISHED.K is introduced to refer to the successful finish output of
CONNEL_FINISH(cs, 0, finish) where 0 is the bit index of kbd. VALID.K
refers to finish&&ckbd->c_state, the normal result in this case. The only
result of a keystroke, other than a quit signal, is to flip the spy state to
SPY.BREAK, which can cause a republication of the time in the report stream
if, as normally, notQuiet is FALSE.

Table 5.42 is the response to communication on the server connel pipeS.
From the point of view of pipeS, sockspy is a client, so it merely gets bytes.
VALID.S is always expected to be TRUE because the alternative is a server
crash. Within that, the first IF block shows a normal publication, verbose
if notQuiet, bare (normal) otherwise. The result of a TRUE doText (not
shown) is to publish, where the byte is ASCII, the character itself after the hex
expression which is always published. This enhances readability and causes a
linebreak when a newline is received.

The second IF block tests the other connel, and if connected it repeats
the received byte to the client. If not, it tries to feed the new datum into
discobuffer for later transmittal. If that overflows, sockspy is terminated by
notdone := FALSE. Not shown in the pseudocode is the normal preparation
for the next ALTALL by calling connel_read_start for the next input byte.

The final ALT response (Tables 5.43 through 5.45) is the most complex:
pipeD. There are three IF blocks. The first one is like that of the pipeS branch
but omits a VALID.D test because a client crash (or quit) is normal from the
point of view of sockspy: it amounts to an out-of-band disconnecting signal.
The second IF block (ampersand notation) captures a transition from connected
to disconnected (here CHECK.CONNECTED.D is the inverse of the important
C macro CONNEL_IS_SERVER_CONNECTED(cpipeD)). The third (triggerD &)
IF block makes a distinction as to whether disconnection was found, and either
(in C) calls connel_connect_start for the next client, or connel_read_start
for the next input byte. In the former case, SERVER.DISCONNECT refers to
the important C cleanup macro CONNEL_SERVER_DISCONNECT(cpipeD).

Table 5.44 refers to a pipeD ALTALL win. finish should al-
ways pass even if a client disconnects. In C, some code involv-
ing int hereconnectD = CONNEL_IS_SERVER_CONNECTED(cpipeD);
if (disconnectedD || !hereconnectD) { accomplishes the same pur-
pose as the pseudocode. At this point, disconnectedD refers to the previous
state of pipeD, before the select, and !hereconnectD refers to the state
introduced by the select. This supports the three-way branch shown in the
pseudocode.

Just disconnected state is referred to by the pseudocode out-of-band re-
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{{{ pipeS response
SEQ
notdone := FALSE
VALID.S(pipeS) & SEQ
notdone := TRUE
IF

notQuiet
SEQ

TIME.COMMENT(scr, clock, tstart, "INPUT S byte\n")
BYTE.VERBOSE.COMMENT(scr, doText, requestS)

TRUE
SEQ

(spy.state <> SPY.SERVER) & SEQ
scr ! ‘\n’
TIME.COMMENT(scr, clock, tstart, "S==>")
spy.state := SPY.SERVER

BYTE.BARE.COMMENT(scr, doText, requestS)
IF

NOT disconnectedD
SEQ

pipeD ! requestS
notQuiet & OUTPUT.VERBOSE.COMMENT.D(scr)

discobufferind < 1024 -- AND disconnectedD
SEQ

(discobufferind = 0) & SEQ
BUFFER.WARNING(scr)
spy.state := SPY.BREAK

discobuffer[discobufferind] := requestS
discobufferind := discobufferind + 1

TRUE -- full buffer AND disconnectedD
SEQ

BUFFER.FULL.WARNING(scr)
spy.state := SPY.BREAK -- not really needed
notdone := FALSE

}}}

Table 5.42
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{{{ pipeD response
SEQ

IF
FINISHED.D(pipeD)

... normal response to a pipeD win
TRUE

... unlikely ever to happen
((NOT CHECK.CONNECTED.D(requestD)) AND wasConnectedD) & SEQ

SERVER.DISCONNECT(pipeD)
disconnectedD := TRUE
triggerD := TRUE

-- triggerD means prepare for next ALT
triggerD & SEQ

(NOT disconnectedD) & SEQ
pstateD := READING
-- also read_start, which could turn disconnectedD to TRUE

disconnectedD & SEQ
SERVER.DISCONNECT(pipeD) -- OK if repeated
pstateD := DISCONNECTED
-- connect_start here, which if successful...
pstateD := CONNECTING

}}}

Table 5.43

ception of disconnecting. Change from disconnected to connected state is
referred to by the pseudocode out-of-band reception of connecting. Other
receptions are in-band (state READING).

The reception of connecting is capable of dumping communications
that were previously buffered in discobuffer. It then puts spy state into
SPY.BREAK so as to make sure that a time stamp is published next reception.
A READING reception causes a response similar to that of pipeS, described
for Table 5.42, but in the other direction. It is always assumed that the output
to pipeS is possible, because a server is not supposed to disconnect.

A failure of communication from the client is not supposed to happen, but
if it does, sockspy shuts down.

Table 5.46 shows the main pseudocode program. It is an approximation to
sockspy plus any client calls that fall in its lifetime, due to the fact that the OS
in C is capable of an unlimited supply of clients. I reduce pipeS to a comment
as an expression of the fact that it is supposed to pre-exist the sockspy call. As
mentioned in Chapter 3 Table 3.1, sockspy.c includes not only the pseudocode
sockspy member but also the preceding CHAN OF ANY pipeD : declaration,
which is modeled by a connel_create call.
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{{{ normal response to a pipeD win
-- hereconnectD := (requestD <> disconnecting)
IF

requestD = disconnecting -- is now disconnected
SEQ --DISCONNECTED

disconnectedD := TRUE
COMMENT.DISCONNECT.D(scr)

disconnectedD -- was disconnected, is now connected
SEQ -- CONNECTING

disconnectedD := FALSE
COMMENT.CONNECT.D(scr)
wasConnectedD := TRUE -- revised to current value
(discobufferind > 0) & SEQ -- need to dump buffer?

pipeD ! [discobuffer FROM 0 FOR discobufferind]
BUFFER.SENT.WARNING(scr)
discobufferind := 0

triggerD := TRUE
spy.state := SPY.BREAK

TRUE -- connected both before and after
SEQ -- READING

IF
notQuiet

SEQ
TIME.COMMENT(scr, clock, tstart, "INPUT D byte\n")
BYTE.VERBOSE.COMMENT(scr, doText, requestD)

TRUE
SEQ

(spy.state <> SPY.CLIENT) & SEQ
scr ! ‘\n’
TIME.COMMENT(scr, clock, tstart, "C==>")
spy.state := SPY.CLIENT

BYTE.BARE.COMMENT(scr, doText, requestD)
pipeS ! requestD
notQuiet & OUTPUT.VERBOSE.COMMENT.S(scr)
notdone := TRUE
triggerD := TRUE

}}}

Table 5.44

{{{ unlikely ever to happen
SEQ

INCONSISTENT.FINISH.WARNING(scr)
spy.state := SPY.BREAK
notdone := FALSE

}}}

Table 5.45
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{{{ main program together with client(s) of pipeD
-- An external server and SOCKLOCAL pipeS precede sockspy run
-- CHAN OF ANY pipeS :
-- VAL BOOL DEBUG, isnotext :
-- The occam kbd and scr declarations are of two command windows
[2]CHAN OF ANY kbds, scrs :
-- the connel pipeD is LOCAL to the run of C sockspy
CHAN OF ANY pipeD : -- its creation is part of C sockspy
PAR

-- sockspy runs on one window
sockspy(kbds[0], scrs[0], pipeS, pipeD, isnotext)
-- The 2nd PAR member corresponds to running programs in an OS
-- The other window is for client(s) of pipeD
COMMANDSTRING command : -- pseudocode
SEQ

kbds[1] ? command
WHILE command <> exit

SEQ
command(kbds[1], scrs[1], pipeD)
kbds[1] ? command

}}}

Table 5.46

5.4.2 Summary of sockspy

The function of sockspy is to publish data and timing flowing in both directions
on a client/server SOCKLOCAL connel. Under normal conditions (notQuiet
FALSE) it captures the time and begins a new line each time the direction of
communication changes, and also after any local keystroke. Therefore some
part of the transmission shown on the line can come considerably later than
the time shown (but before the next time). Also published is information about
connection and disconnection of the client.

The connels of sockspy are operated bytewise. For control transmissions
and short data, as is typical in embedded robotics applications, the inefficiencies
thus introduced are insignificant. Transmission speeds of server or client are
probably not affected, because of system buffering, but a slight slowdown in
response is possible, even on a fast OS, due to spinning through the Connel
and IO calls.

The screen output of sockspy can be redirected, using tee and similar
capturing tools. Standard scripting, in both Linux and Windows, is capable of
quite complex operations involving sockspy, even including sequences of clients.
It has been used for serious debugging of a proprietary UI-based robotics and
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control system.

5.5 Other sketches
The rest of the current applications of Connel were written as development aids
for Connel itself, or for its graphics extension. They do not fit the “pseudocode
first” model, though they have many useful and illustrative blocks of code that
are usable in concerted application development. Therefore, in this section,
I will sketch their high points with partial pseudocode, and expand the key
techniques illustrated by them.

A better approach, not driven by haste and external requirements, would be
to build a library of illustrative small applications, in the manner of traditional
embedded processor sample code. Such a development could proceed in tandem
with language or scripting work and actual embedded extensions to Connel.
My hope is that we can put our heads together about such directions, but in
the meantime this book will work from the current, admittedly inadequate
state of things.

The main value of these sketches is in their illustration of Wide programming
itself. Each one displays an “angle” that will be needed in the most general
programming tasks. Unlike whole languages devised according to the Deep
paradigm, the Wide approach (using Connel or other tools) is totally general
in the problems it can deal with, and that means it is uniquely good for large
projects and projects that will grow in unexpected directions.

5.5.1 Serial block communication—ttester and rtester

The two programs ttester.c and rtester.c are meant to communicate with
one another across a real or virtual serial connection. This differs in three ways
from the SOCKLOCAL connel used by tapper and sockspy:

(1) The connel must be established outside both communicating pieces,
instead of being created by one of the pieces. This model is friendly to a
connector that is outside the whole OS or even outside the hardware, and
able to connect heterogeneous systems. But it always requires scripting or
documenting an external setup procedure, which can include specifications
starting with baud rate.

(2) Both sides of the communication are equivalent. There is no server/client
distinction, and either side can start first. The downside is that if the sides do
not shut down in tandem, behavior can be unpredictable or implementation-
dependent, ranging from a kill upon next transmission to a buffering of unsent
bytes (with later surprising results).
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(3) There are no special, out-of-band “connecting” or “disconnecting” mes-
sages. Thus a CHAN OF BYTE is OK, and pass-through to or from STD connels
kbd and scr is often possible. That is not an exact fit, however, and serial-to-
tty issues differ slightly in every OS. Still, the serial model is very friendly to
heterogeneous embedded pieces, even when the data is not actually passing
through an RS232 connection.

As detailed in Chapter 3, Section 3.7, “Standard third party tools,” the
Linux command stty and the Windows command MODE enable you to set up
the detailed specifications of a serial connection. That serial connection may be
of hardware wires, or between two virtual machines (see [5]) or part of another
hardware protocol.

The pseudocode of Table 5.47 is a summary, not complete, of the code in
ttester.c and rtester.c. The C code permits keystroke input and uses an
ALT or connel_select to arbitrate between kbd and serial, but this is code
inherited from other programs when the lazy coder (myself) modified them for
a speed test. The right way to call them never uses a keystroke during the run,
but merely performs something like
./ttester 1 16384 10
in Linux and
RTESTER 2 16384 10
in Windows, to transmit 10 packets of 16384 bytes each across a serial connection
that is /dev/ttyS1 on the Linux side and COM2 on the Windows side.

Though the kbd option is useless, the connel_select serves a purpose
in demonstrating buffering. Running the tester pair with the verbosity of
rtester adjusted to show each serial select win, using a large buffer size,
it is seen (at least for a 9600 baud VMWare virtual serial connection) that
there are many such wins before finish goes TRUE. The big read, in this
case, comes across in batches of about 10 bytes. Each of them triggers the
end of a connel_select block, but the CONNEL_FINISH macro returns finish
TRUE only when all the data has arrived.

5.5.1.1 Summary of utility—large transmissions

The new feature here is the transmission of large blocks of data across a real
channel. This differs from the design of the Satellite Receiver, detailed above,
in that most of the large blocks in the Receiver were virtually transmitted
using implied pointers. In real large-block transmissions, buffering and/or DMA
usually play a big role, and this implies that efficiency analysis must consider
two main types of cost: fixed cost, or the cost (especially time—latency) for
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-- Global resources are:
-- Externally set up serial connection
-- VAL INT PKTSZ
-- VAL INT PKTCT
PROC ttester(CHAN OF ANY serial, VAL INT pktsz, pktct)
[65536]BYTE bigbuf :
BYTE thechar2 :
CHAN OF BYTE in IS (CHAN OF BYTE) connel.machine(serial) :
CHAN OF ANY out IS serial :
((pktsz>0) AND (pktct>0) AND (pktsz<=65536)) & SEQ
SEQ i FROM 0 FOR pktct

SEQ
out ! [bigbuf FROM 0 FOR pktsz]
in ? thechar2 -- actually uses an ALT

:
PROC rtester(CHAN OF ANY serial, VAL INT pktsz, pktct)

[65536]BYTE bigbuf :
VAL BYTE thechar2 IS ’&’ : -- never changes
CHAN OF ANY in IS connel.machine(serial) :
CHAN OF BYTE out IS (CHAN OF BYTE) serial :
((pktsz>0) AND (pktct>0) AND (pktsz<=65536)) & SEQ
SEQ i FROM 0 FOR pktct

SEQ
in ? [bigbuf FROM 0 FOR pktsz] -- actually uses an ALT
out ! thechar2

:
CHAN OF ANY serial : -- externally connected and set up
VAL INT pktsz IS PKTSZ :
VAL INT pktct IS PKTCT :
PAR

ttester(serial, pktsz, pktct)
rtester(serial, pktsz, pktct)

}}}

Table 5.47: Summary pseudocode for tester (top comments removed)
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sending the first byte of the block, and incremental cost, or the cost (especially
time—data rate) for sending each byte of the block after that.

Things can, of course, be more complicated than that (the time curve can
have “elbows”), but most real channels can be summarized this way. ttester
and rtester allow an experimental test to be carried out and are especially
valuable when critiquing a specification, or the designer’s understanding of
a specification. Often latency and data rate behave oppositely: a hardware
protocol that has the best data rate may have bad latency, and vice versa.
Therefore fully acknowledged “point tests” of prospective channel technologies
are valuable as part of the First Wave, and “keeping up” with the results thus
obtained is valuable as a critique of later programming.

5.5.2 Timer waits—test8out and test8in, and timer ALT

The connel_timeout_t struct uses two 32-bit integers to express time in
seconds and microseconds. As in occam, the Connel timers can be used in
three ways:

(1) A call to connel_timebase yields a current time value. It is relative to
other current time values in the same program run. These are clock times, not
program run times. Once you get a single timebase, all other times are relative
to that, so it can be used to construct timeouts.

(2) A call to connel_sleep blocks until as soon as possible after the
specified time. This is a sleep for a time, not a sleep until a time. If something
equivalent to the occam
clock ? AFTER time
is desired, its target must be constructed using connel_timesub to calculate
the sleep from the result of connel_timebase. If the time is negative, it is
treated as zero, which is not quite the same as returning immediately: the
OS swaps the program out and immediately puts it in the queue to run again.

(3) A time in the second formal parameter of connel_select is an ALT
timeout, which like (2) is defined as waiting for the time and not until the
time. Again, this is unlike the occam usage. If the second formal is negative or
zero, this instance of connel_select will return immediately, whether or not
any other branches of the ALT are ready.

The occam ALT branch
TRUE & SKIP
(which always returns immediately if nothing else is ready) can be emulated
by specifying a timer branch (second formal parameter) that is negative,
referring to the past. Here “past” and “present/future” are based on the sign
of the relative connel_timeout_t struct, which is always equal to the sign
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of its ct_seconds member, because the ct_microseconds member is always
nonnegative. Thus “1 microsecond past” is denoted by ct_seconds = -1 and
ct_microseconds = 999999.

The pair test8out and test8in operate by sending and receiving in a
different rhythm. The sender test8out generates INT64s, which increment by
8, and are broken up into an 8-byte code in a peculiar fashion (see the library
eightlib.c). It pauses a certain amount of time between each burst of 8. The
receiver test8in receives one byte at a time, pausing another amount of time
(presumably less than 1/8 that of the sender) between bytes. The receiver is
also capable, from time to time, of printing a summary of what it has recently
received. A connel_select is used by both to allow a single keyboard kill
signal.

Thus, the test8 pair exhibits both (1) and (2) of the three timer uses
listed above. However, it does not provide an example of the timer ALT (the
select timeout). Table 5.48 shows the bare bones of a timer ALT (unrelated to
test8) imposing a timeout on an awaited keystroke. The arrangement shows
a “comb” of timeouts, with fixed spacing of ctdel, which as time passes will
always generate timeout wins unless the keystrokes are “screaming” to such
an extent that there is always a keystroke ready. The part at the end, which
prevents a negative ctsub, is not really necessary.

5.5.2.1 Accuracy of timers

The use of Connel timers, like those of the OSs on which Connel is built, is
always approximate. In standard OSs, which are not “real-time” or embedded
CPUs, the timer resolution is usually rather coarse, typically between 1 to 4
milliseconds (Linux) to up to 14 milliseconds (Windows). In my experience, the
tendency is for the resolution to degrade (become longer) with later versions
of an OS. For example, around 2008, a Linux distribution my employer was
working with went from 1000 ticks per second to 250 ticks per second.

A serial connection at 115200 baud is more than ten times faster than this,
and other interrupt-based communication is even faster. Therefore, if high
timer responsiveness is needed, it is best to “farm out the job” to heterogeneous
embedded hardware which these days can be very cheap. I will give more
details on this in the embedded chapter.

Very precise time recording can be done by using the cycle-counting capa-
bility of most chips, e.g. RDTSC in the X86. This is not yet supported by the
Connel calls, but can easily be added in OS-specific code by the programmer.
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connel_timeout_t sct, sctnext, sctdel, sctsub;
connel_timeout_t *ct = &sct;
connel_timeout_t *ctnext = &sctnext;
connel_timeout_t *ctdel = &sctdel;
connel_timeout_t *ctsub = &sctsub;
connel_set_t scs;
connel_set_t *cs = &scs;
int notdone;
/* initialize notdone, cs, ctdel, ctsub, ctnext, etc. */
while (notdone) {
unsigned long newready = 0;
int kbdhit = 0;
int timedout = 0;
int ret = connel_select(cs, ctsub, &newready);
newready |= cs->cs_ready;
if (ret > 0) {

if (newready&1) {
unsigned long finish = 0;
CONNEL_FINISH(cs, 0, finish);
if (finish&&ckbd->c_state) {

kbdhit = 1; /* = kbdhit := TRUE in pseudocode */
} else if (finish) {

notdone = 0; /* Input keystroke failed */
}

}
} else if (!ret) { /* No keystroke; it timed out */

timedout = 1; /* = timedout := TRUE in pseudocode */
ret = connel_timeadd(ctnext, ctdel);

}
ret = connel_timebase(ct);
memcpy(ctsub, ctnext, sizeof(connel_timeout_t));
ret = connel_timesub(ctsub, ct);
if (ctsub->ct_seconds < 0) {

memset(ctsub, 0, sizeof(connel_timeout_t));
}

}

Table 5.48: Connel usage in code snippet for timer ALT
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5.5.2.2 Summary of utility—timers

A timer is very useful in its place, but timers are dangerous if
overused. This is because a timeout makes a state machine unpredictable,
and the effects of a timeout propagate through other parts of the program,
causing remote effects that can be nearly impossible to diagnose. If timeouts
are used, as in the Orchard Sensors, then the entire program must be written
with timeouts treated as a normal branch, as opposed to the Deep Programming
habit of sweeping them under the rug as “exceptions.”

Other, less dangerous, uses are often overlooked. Recording is very valuable
and almost cost-free, and frequently it makes sense to add time members to
any packet with a significant history, because the programs that use them will
never stop being developed. The recorded times will then lead straight to the
diagnosis of any bottlenecks. Smoothing is done by a combination of timeouts
and buffering: it imposes a substantially fixed latency on all data throughput,
and thus eliminates “hiccups.” This fixed latency is forced to be greater than
the maximum latency ever imposed by program flow, and must be carefully
supported by output hardware, as in video and music. Spacing can be imposed
on a project piece that has a tendency to be “lumpy” and deal with infrequent
big batches of not-very-urgent throughput. This is accomplished by inserting
frequent waits within the loops working through the “lumps.” This controls
hiccups from the other end, and is friendly to a mix of widely different real-time
response requirements.

5.5.3 Graphics—gsflip

A final sketch in this chapter deals with an early, developmental version of the
graphics slave promised to some Kickstarter backers. In addition to standard
Connel, this uses the connel_g.c library mentioned in Chapter 3 Section 3.4.
Though I will not give full details here, as some of it is still under development,
the shape of things is already clear enough to be instructive.

In both Windows and Linux, the graphics machinery behaves like an
independent piece, notifying the program hosting it in an asynchronous fashion.
But there are great differences in the details of how this is handled. Surprisingly,
a Connel approach makes it possible to get the same responsive behavior despite
these details, and even to use exactly the same 2D array format for the color
frame buffer.

The Connel approach is to make graphics responsiveness a “special case”
of connel_select, somewhat like timeout responsiveness. Thus, the Connel
application with graphics (like gsflip.c and the coming graphics slave) has an
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[HEIGHT][WIDTH][4]BYTE image :
PAR j FROM 0 FOR HEIGHT -- start from top and go down

[WIDTH][4]BYTE line IS image[j] :
PAR i FROM 0 FOR WIDTH -- start from left and go right

[4]BYTE pixel IS line[i] :
PAR

pixel[0] := blue(i, j)
pixel[1] := green(i, j)
pixel[2] := red(i, j)
pixel[3] := (BYTE)0 -- unused

Table 5.49: Graphics fill

extra response branch each time select fires. Coding adapted to each operating
system does “painting” and other operations immediately upon responding to
this stimulus.

In the case of Linux, upon recommendation of William Swanson, I use
the XCB library for the X Windows system. This requires, in Ubuntu, that
the version be at least 10.04 (Lucid). The connel_g library in this case calls
xcb_get_file_descriptor which yields a special file descriptor for graphics
events, to which C select can respond. However, connel_select does not
expose this special descriptor as yet another machine, but instead treats it as
a response that must be checked every time. The extra effort involved in this
is insignificant: the test is
if (cs->xcbisset) DO_GRAPHICSSTUFF;
and if there have been no graphics events it just branches past.

In the case of Windows, no choice of graphics toolset is required; it
is part of the default OS. It uses messages and callbacks, and within
connel_select the Windows code calls MsgWaitForMultipleObjects instead
of WaitForMultipleObjects. As with Linux, every time the select fires there
is a check made for messages, calling connel_g_peekmsgs() which uses the
Windows tool PeekMessage() to catch, translate, and dispatch each message.
There may be no messages, but if there are, the Windows OS code carries out
callbacks to messages like WM_PAINT, and this accomplishes the same thing as
the xcbisset graphics branch in Linux.

The upshot of all this is that a graphics window can be opened as a slave
under either Windows or Linux, and rectangular subsets of it can be updated
at full speed (currently the rectangular subset is the full window). The same
array in C works to color the pixels the same way in both Windows
and Linux. The pseudocode for it is in Table 5.49.

The extreme degree of parallelism in this pseudocode is justified by the fact
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that a PAR that does not involve communication can always be implemented
either in parallel or sequentially. The mix of PARs and SEQs will, for example,
differ depending on the graphics card in a real computer. In gsflip where
the buffer is being filled in by the C routine fillimage(), all the PARs are
replaced by SEQs (i.e. for loops or expanded code), but it is possible that
optimization, by the compiler or by the CPU, is operating “under the radar”
to restore some of the PARs.

5.5.3.1 Some code blocks

Table 5.50 shows the commentary that describes how to compile and link
graphics programs, and Table 5.51 shows the outermost structure of the simple
graphics slave, gsflip.

Table 5.50’s comments are quite clear, if somewhat dated. Both WINgs2
and XCBgs2 are now replaced by gsflip, which contains the code for both
OSs. And gxconnel is a name for object files compiled from connel.c with
the modifier CONNEL_GRFX. The Windows linking is done in such a way as to
have a standard appearance, like command line linking, without using special
non-standard Windows calls.

Several features of graphics coding are shown in Tables 5.51 and 5.52.
The macro GODEAFIFGONE is an example of what could be done more
generally to reduce the prolixity of Connel code. The global variables support
fillimage() and (for Windows) the Window (callback) Procedure, both of
which are outside main(). The fillimage() code is completely independent
of OS and corresponds exactly to Table 5.49, except for a single global variable,
global_flip, which changes blue(), green(), and red() after each external
input to gsflip. The connel_grfx_t struct and its pointer, and the Booleans
notDone and going, are not really restricted to Windows, it is just that they
must be declared before the callback in Windows, while in Linux they are
declared at the top of main(). However, Booleans notInit and notDC are
really for Windows only.

5.5.3.2 Summary of structure

The structure of gsflip is rather simple, and is applicable to any graphics
slave. Because of the tight involvement with OS and graphics hardware, it is
not expanded into two (or more) PAR members, but is treated as a single piece
with a responsive ALT to deal with the graphics. Table 5.53 is a pseudocode
summary, omitting some details, which are fully supplied in the C code and
the supporting operating system calls.
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* Windows code credit:
* From winprog.org/tutorial/simple_window.html
* Substantially changed by LJD.
* Different from standard code as used thus far
* Fixed so that debug stuff appears in a debug window
* How to make the GUI code run without the non-standard main
* int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
* LPSTR lpCmdLine, int nCmdShow)
* Compile normally but link differently:
* cl /c WINgs2.c
* cl WINgs2.obj ..\LAZM\connel_g.obj ..\LAZM\gxconnel.obj \
* /link /entry:mainCRTStartup /subsystem:windows User32.lib Gdi32.lib
* And add the lines:
* int nCmdShow = 1;
* HINSTANCE hInstance = GetModuleHandle(0);
*
* Linux code credit:
* XCB application drawing an updating bitmap in a window
* Inspired by the xcb black rectangle in a window example
* Copyright 2010 V. R. Sanders, released under the MIT licence
* Substantially adapted by LJD.
* compile with:
* gcc -c XCBgs2.c
* gcc -Wall -lxcb-icccm -lxcb -lxcb-image -o XCBgs2 \
* XCBgs2.o ../LAZM/connel_g.o ../LAZM/gxconnel.o
* Bug fixed (i,j swapped), color scheme changed. LJD 8/24/2013
* Further development LJD 8/28/2013
*
* LJD 8/21-29/2013 Slave Flipper
* LJD 9/10/2013 uses gxconnel
*/

Table 5.50: Commentary on gsflip.c

The key structure is a message event (shown) which in both Linux and
Windows signals content in a queue of messages that is consumed and inter-
preted in each OS (hidden in HANDLE.MESSAGES() in the pseudocode). This
is a check on pb->xcbisset in Linux and a call to connel_g_peekmsgs() in
Windows. In each case, zero messages is a possibility.

The differences between Windows and Linux/XCB are hinted at by the
comments involving CREATE, PAINT, CLOSE, and DESTROY. These in
Linux are handled in the normal way, when the message is found. In Windows,
the PeekMessages loop in connel_g_peekmsgs makes OS calls which in turn
make callbacks that are defined in our Windows Procedure. These are defaults
except for the messages WM_CREATE, WM_PAINT, WM_CLOSE, and
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#ifndef CONNEL_LINUX
#define CONNEL_WINDOWS
#else
#undef CONNEL_WINDOWS
#endif
#define CONNEL_GRFX
#ifdef CONNEL_WINDOWS
#include "..\LAZM\connel.h"
#include "..\LAZM\connel_g.h"
#else
#include "../LAZM/connel.h"
#include "../LAZM/connel_g.h"
#endif

#define GODEAFIFGONE do {\
if (listening&&(!going)) {\

ret = connel_machine_deafen(cmkbd, 0);\
CONNEL_DINFO("connel_machine_deafen(cmkbd, 0) returned %d\n", ret);\
if (ret<1) {\

ret = connel_machine_deafen(cmkbd, 1);\
CONNEL_DINFO("connel_machine_deafen(cmkbd, 1) returned %d\n", ret);\

}\
listening = 0;\

}\
} while(0)

#define THEWIDTH 512
#define THEHEIGHT 384

... global variables (mostly Windows)

... fillimage(unsigned char *p, int width, int height)

... // Step 4: the Window Procedure (Windows)

... int main(int argc, char *argv[])
}}}

Table 5.51: Top fold of gsflip.c, with commentary removed
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{{{ global variables (mostly Windows)
int global_flip = 0;
#ifdef CONNEL_WINDOWS
int notInit = 1;
int notDC = 1;
int notDone = 1;
int going = 1;
connel_grfx_t cgb;
/* HDC cgb.hDC; device context of window */
/* HDC cgb.hMemDC; compatible DIB device context */
/* HGDIOBJ cgb.hOld; storage space for old HBITMAP */
/* HBITMAP cgb.hBitmap; the one for the DIB */
/* VOID *cgb.imagebits; return place for image */
connel_grfx_t *pb = &cgb; /* GLOBAL BASE POINTER */
#endif /* CONNEL_WINDOWS */
}}}

Table 5.52: Globals depending on OS

WM_DESTROY which include the code we write to accomplish those tasks.
(Actually WM_CLOSE just triggers a call which sets up the OS callback to
WM_DESTROY.) The final result is just the same as the responsive check-
and-branch of the Linux code.

It is not incredibly clear why Windows took this extremely convoluted way
of doing a simple select, but it is worth noting that responsive Object Oriented
systems always seem to implement this callback approach, often using nesting
callbacks that reach a great depth. Its only Deep advantage seems to be that
state machine details can be hidden from the main loop.

In any case, Table 5.53 is a basic design template that can easily be expanded
to any graphics slave capability. One merely replaces kbd ? signal with as
many independent inputs to the ALT as the project needs, and allows each
independent input to provide what information the graphics needs to revise
its picture. Then g.mapimage is refined to notify the display machinery to
revise the picture, often restricting its rectangular BitBlt area to just what is
needed. (In the C code, the WINDOWPACKET has a pointer to image, so
from the pseudocode point of view g.mapimage sees image and the connection
to the graphics hardware as globals. Failing to show this explicitly is not good
pseudocode design practice, but this design is dictated by the OS, and the
pseudocode is only descriptive.)

Expanding fillimage and g.mapimage to be responsive to graphics com-
mands is a completely general approach. It can be used for vector or for raster
graphics, with or without anti-aliasing and remapping of the picture to a dif-
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-- Approximate pseudocode for gsflip
-- Global resources are:
-- CHAN OF EVENT msg
-- CHAN OF ANY kbd
-- INT HEIGHT
-- INT WIDTH
[HEIGHT][WIDTH][4]BYTE image :
WINDOWPACKET b :
BOOL notdone :
SEQ

g.winsetup(b) -- includes CREATE
fillimage(image)
g.mapimage(b, FALSE)
g.winshow(b, WIDTH, HEIGHT)
notdone := TRUE
WHILE notdone

BYTE signal :
BOOL grfx :
SEQ

ALT
kbd ? signal

SEQ
notdone := (signal <> endsignal)
notdone & SEQ

fillimage(image)
g.mapimage(b, TRUE)

msg ? grfx
SKIP

HANDLE.MESSAGES(b, image) -- includes PAINT
g.close.and.destroy(b) -- includes CLOSE and DESTROY

}}}

Table 5.53: Summary pseudocode for gsflip (top comments removed)

ferent pixel density. The only restriction is the usual buffering requirement,
that the part of image that is being modified by graphics commands should be
distinct from the part that is being transmitted to the picture. In this code it’s
single-buffered; image modification and image mapping to the display are in a
SEQ. A double-buffering scheme can easily be designed if great responsiveness
is needed.

5.5.3.3 Summary of utility—graphics slave

The ability to write a graphics slave with this simple structure is one of the key
rewards of Wide programming. It unwinds the most hideous code tangles, the
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ones dictated by a Graphical User Interface which is being forced to “branch
out” its options by disorganized and unexpected user needs. It does this by
striking at the root of bad GUI design: the fact that a GUI entangles both
command input and informational output in the same interface.

The user interface of the graphics slave is output only. Its input, whether
program-controlled or user-controlled, is decoupled from this. Not only does this
disentangle the code. It also frees the entire project from the crippling
requirement that everything be an “instant response” to screen stim-
uli, adapted to an attention span around fifteen seconds. This brain-damaging
feature of the standard GUI is quite absent from programs using a graphics
slave.

The graphics slave can have a long life, because some of its ALT inputs can
be managed by server connels. This means that whole programs and pieces of
hardware can be disconnected and reconnected, with inputs and controls that
are quite different from each other. This is very friendly to science and complex
control such as robotics. Think of it as “server stuff” that, traditionally, “you’ve
got to do with scripts,” avoiding a GUI because it’s under active development
and frequent design change. Now you can have immediate graphics too, and it
won’t react back on the rest of your work, tying it in knots.
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6Wide Embedded
Programming

Abstract

This chapter concludes the book with an introduction to the kind
of computing whose capabilities are completely general. “Embedded”
computing is that computing which is part of the design of things that are
not computers. It therefore avoids the self-referential, eating-its-own-tail
nature of abstract “computer science,” and responds to the broad variety
of every other kind of science. I go beyond Connel here, and show how
Wide techniques flatten out the requirements of all such projects, reducing
them to tractable pieces. It doesn’t matter how recent, how high-speed
or how big-sized the “core” is. The arcane alphabet soup that refers to
responsive driver hardware is not an alien specialty, but just offers more
examples of what is done everywhere in Wide programming.

6.1 Embedded essence: time flow
From your phones, your vehicles, your household appliances up and out to
space probes on Mars and Titan, embedded programming is the cutting edge
not only of computing but of much of science and economics. Here, I believe,
Wide Programming will stand or fall. In fact, the Wide task is to pull all that
back from a mystery land of confusing icons and place it before the scientific
mind in a working form as clear and understandable as a street map.

The world of embedded programming may seem so various that it cannot be
conquered by a single approach. But that appearance is caused by the rush to
complexity in all matters of computing. Gregg Keizer calls this a “complexity
tax,” and observes it bringing down Microsoft (see [7]). If you focus on the
results that must come from embedded programming (that is, programming
that supports a design with a purpose beyond information passing), then a
clear common ground appears. In all actions in the real world, time flow is
of critical importance. All other causes and consequences that any embedded
program must deal with are mounted, so to speak, on a scaffolding of time.
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6.1.1 Design principles

Each embedded program, or piece thereof, is built on the basics of a state
machine in the real world. The three components they all share are:

1. Input or stimulus
2. Computation over time
3. Output or actuation

I use the term input to refer to some state imposed by the outside world
that is digital and in the computer’s address space, and thus is of the same
programmable nature as the computation of step 2. Similarly, output is a state
imposed on the outside world that is digital and from the computer’s address
space. Each of these is a copy from/to the outside world to/from the computer,
and therefore forms a connection between computing inside and computing
outside.

By contrast, I use the term stimulus to refer to any other kind of state
imposed by the outside world, such as timing or analog voltage. And actuation
is state imposed on the outside world, not just timing or voltage, but any
microscopic or macroscopic physical effect. These are at the same time subject
to the laws of programming and to the laws of physics beyond the hardware of
the computer. This is not copy but cause and consequence, and here the
physics of the external world takes complete precedence over the logic of the
computer. The external world doesn’t care about the state of the computer,
but the computer must care about the state of the external world, or it will
fail of its purpose.

Thus the critical considerations, at both ends, are power and time. Usually,
power is adjustable using good engineering, since the power controlled by a
switch can be any multiple of the power needed to throw the switch. That leaves
time. The essential feature of embedded programming is
successful handling of timing constraints.

Notice that this implies that embedded computing can be harmed by its
strengths as well as by its lacks. It’s quite frequent for quality to degrade
because the program is too fast for the physical device to respond properly.
This includes instant changes in values, which can be alien to smooth higher
derivatives that are needed by the physics.

6.1.2 Time coherence

Typically, a developer on a modern system tends to be defeated before he
starts by the sheer weight of accumulated technology. This causes him to
“sheer off”—either toward minor projects using standard embedded toolsets,
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which are designed to be introductory and not to be the whole story, or toward
“app” or “web” development that approaches the programming equivalent of a
fill-in-the-blanks test in the academic world. Is it really true that all the good
stuff has already been done, and the individual developer is like a placeholder
in a decadent school of philosophy, making minor adjustments in a huge thing
far beyond his control?

To show why not, I have to unwind where we’re at. When you spin the
little cloud of icons on your smartphone, you are doing magic. What does it
do? Everything, and incoherently, and instantly. It acts in a hyperactive city
where every place is the same, and everything is getting more itty bitty all the
time. Its design is based on psychology.

However, if you lift your eyes beyond the handheld flat screen, you discover
that the world is big. The project sketches in this book reflect that, even the
21-sensor orchard. (Try going to every tree even in such a small orchard.) The
Kicksat cloud, even viewed from the mother ship’s point of view (with delta
orbital elements of a few miles per hour), gets very large. Its path is bigger.
The resource of “flyover country” is unimaginably huge—you will hail your
nearest neighbor across a hill—but it bears no fruit for you, unless you are
farming or prospecting or fracking, or doing something fundamental like that.

But someone is doing something fundamental like that, whether robotics
or resource surveys. When you make those connected pieces work together,
you are doing science. What do the pieces do? A simple coherent thing, or list
of things, over time, and sensing or moving a weight of reality over a distance.
The design of the pieces is based on nature.

Boeing made a lunar rover in 1971, before there were personal computers.
Like a classic car, it implied a true embedded program, even if little or no
electronics was used. Its connected and nested pieces went from cause to
consequence over time, responded to reality, and moved it over a distance. Only
last year (2013), after forty-two years, was its successor finally deployed, and
by China. I want to return to that kind of thing. After the long Moore’s Law
hiatus, I think its time has come.

6.1.3 Three physical constants

Response of a mechanical or electrical system over time is usually controlled
by a set of three constants, whose dimensions are related as X, XT , and XT 2,
where T is time (Table 6.1).

More precisely, X = P
Q , where P is a kind of “push” and Q is a kind

of “quantity,” always chosen so that the product PQ is energy. Thus the
dimensions become, respectively, PQ ,

P
Q/T , and

P
Q/T 2 . The denominators are
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respectively “quantity”, “quantity per unit time”, and “quantity per unit time
per unit time”.

The analogy is complete between the mechanical responses and the electrical
responses, and they follow exactly the same equations. (There is a third set
of related mechanical responses, in which torque takes the place of force and
angle takes the place of distance, which also fits the same exact analogy, and
is often of even greater use in mechanical design.) These responses are always
calculated in any actuator design, and the success of such designs depends on
getting them right. That means the output “push” (whether voltage, force, or
torque) must have the right curve, including the right smoothness. Usually,
jerkiness (value or derivative discontinuity) is bad, and ringing (unwanted
oscillation) is also harmful.

6.1.3.1 Physical interfaces and time constants

Digital data is naturally jerky, essentially always integer snapshots at time
intervals. This holds both for input (after analog-to-digital conversion, or ADC)
and port output generated by a digital device. In addition to jerkiness, one
must deal with the fact that single-port digital data is only 0s and 1s, while
“real-world” data takes intermediate values.

On the input/stimulus side, debounce is often needed. This is done by a
combination of averaging and hysteresis. Averaging requires a time breadth (or
a frequency cutoff) and does a moving average of the bouncing values from the
switch over this time breadth (see below). Hysteresis does not admit to a state
change until movement of the averaged value goes well beyond the boundary in

TYPE MECHANICAL ELECTRICAL

P Force Voltage
Q Distance Charge
Q
T Velocity Current
Q
T 2 Acceleration Rate of change of current
X = P

Q Spring constant 1/Capacitance
XT = P

Q/T Friction Resistance
XT 2 = P

Q/T 2 Mass Inductance

Table 6.1: Constant triplet, two examples
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the direction being detected. That means that to change state back, it has to
go well beyond the boundary in the other direction, which eliminates chatter
caused by slight ringing which can persist even after averaging.

On the output/actuator side, the first step is to change 0/1 data to the
intermediate values required by the real world. This multi-valued output
can be accomplished in two ways: digital to analog conversion or DAC, and
pulse-width modulation (PWM). A DAC, changing value at certain timed
intervals, simply outputs voltage that is proportional (or at least functionally
dependent) on an input integer. PWM alternates the voltage in binary fashion,
say between 0V and 3V, but holds each value for differing lengths of time so
that the time-integrated average is the desired value.

So far, we have four time constants. Input takeup, as by an ADC, must
happen at timed intervals. Input averaging for hysteresis must average over
a time (though it can be more subtle than that, as described below). If an
output DAC is used, the integer driving the voltage must be re-evaluated at
timed intervals. And if pulse-width modulation is used, the full waveform (the
1 and 0 pattern that averages to the correct value) has a certain time duration.
All of these time constants imply controlled delays.

6.1.3.2 Averaging and smoothing filters

There is another tradeoff. A moving average extends over a certain amount
of time, which is usually expressed as a cutoff frequency. In Figure 6.1 we see
log-log plots of the frequency response of three averaging filters, and I define
the cutoff frequency to be the point of intersection of their asymptotes; 1 in
every case. (Another definition is the “3DB” point, which for two of the filters
is less than 1.) However, the smoother filters have steeper declines in stopband
sensitivity. See Figure 6.2 for the impulse responses of the three filters.

The interesting thing is that the smoother filters have longer delays. In fact,
in the filters of Figure 6.2, the delay is equal to the smoothing
order divided by the (reduced) asymptotic cutoff fre-
quency. The delay is here defined as the expected delay value of the impulse
response, treated as a probability density, and equals the limit of phase delay
and group delay as (passband) frequencies approach zero. The smoothing order
is the increase in smoothness caused by the filter, where -2 is the “smoothness”
of an impulse, -1 is the smoothness of a function with discontinuities (like
digital input and output), 0 is the smoothness of a continuous function with
corners, and n greater than 0 means continuous n-th derivatives.

The filters of Figure 6.2 are linear averaging filters. This means their impulse
response always has a total integral equal to the impulse, it is all to the right
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Figure 6.1: Averaging filter cutoffs, orders 1, 2, 3

of (after) the impulse, and it is everywhere nonnegative. The last condition
is to avoid “ringing”. The filters chosen are critically damped (have only one
time constant, of multiplicity n), which means their response is as quick as
possible, assuming the avoidance of ringing.

It is not necessary to pick critically damped filters; overdamped ones will
also avoid ringing. But the critically damped ones are the best, if they can
be achieved, and they are also simply related to one another. In Figure 6.3,
a critically damped filter impulse response lies between each pair of curves,
and if summed all the way to ∞ they will converge to the Heaviside “step”
function (1 for t > 0, 0 for t < 0).

6.1.3.3 Real implementations using ladders

Figure 6.4 shows a general structure, called an “LC ladder”, for the construction
of smoothing filters. We want the transfer function

VL
V0

= RL
RL +R0

1
(σ + 1)n (6.1)
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Figure 6.2: Impulse response functions, orders 1, 2, 3

where

σ ≡ τs ≡ τjω (6.2)

for ω the (reduced) frequency, j ≡
√
−1, and τ the (reduced) cutoff period,

inverse of the cutoff frequency. Notice that the first factor of the right-hand
side of (6.1) is enforced by the ω = 0 behavior of each circuit, functioning as a
DC voltage divider, with an inductor acting as a short circuit and a capacitor
as an open circuit. Here s is a Laplace transform variable.

The most general approach to the LC ladder and similar networks is to
use impedance and its inverse, admittance. Impedance extends the concept of
resistance to AC by treating a sinusoid as equivalent to a complex exponential
that is rotating in the positive direction and has the sinusoid as its real part:

cos(ωt+ φ) ∼ ej(ωt+φ)

It follows from the differential equations that an inductor with inductance L
has impedance jωL, and a capacitor with capacitance C has admittance jωC,
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Figure 6.4: Smoothing ladder filters (electrical)
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hence impedance −j
ωC . Using this, all the circuits of Figure 6.4 can be analyzed

as if they were resistive circuits.
The circuits of Figure 6.4 are analyzed by alternating impedance (voltage

divider) and admittance (current divider) expressions. Giving the third order
circuit as an example, and using Z for impedance and Y for admittance, we
get:

Y3 = jωC3 + 1
RL

Z3 = 1
Y3

Z2 = jωL2 + Z3

Y2 = 1
Z2

(6.3)

Y1 = jωC1 + Y2

Z1 = 1
Y1

Z0 = R0 + Z1

And the transfer function is:

VOUT
V0

= Z1
Z0

Z3
Z2

(6.4)

It’s actually easy to see in general that the filters of Figure 6.4, and
similar higher-order filters constructed with more inductors and capacitors, are
smoothing filters of the expected order. This is because equations of the type of
(6.3) show inductively that for large ω each sum step is dominated by its new
capacitor or inductor, and thus the magnitude of the transfer function must
behave like |ω|−n for large ω. Since it’s easily seen to be a rational function of
that order, it must have a constant numerator and an n-th degree polynomial
denominator, and since it is the Laplace transform of the impulse response,
that implies the expected smoothness.

However, we must still fit it to the critically damped Equation (6.1). If we
make things dimensionless by defining
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R ≡ RL +R0

ε ≡ RL
R

γ3 ≡
RLC3
τ

λ2 ≡
L2
τR

γ1 ≡
R0C1
τ

then it follows from (6.1) and (6.3) that

λ2 = 1
γ1γ3

γ1 = γ3
3γ3 − 1

and substitution in the remaining equation gives

(3− 3ε)γ4
3 − (10− 2ε)γ3

3 + 12γ2
3 − 6γ3 + 1 = 0. (6.5)

The left-hand side of (6.5) is linear in ε. Substituting the extreme values
of ε = 0 and ε = 1 yields, respectively, the left-hand sides (3γ3 − 1)(γ3 − 1)3

and −(2γ3 − 1)3, both of which are positive for 0 ≤ γ3 < 1/3 and negative
for 1/2 < γ3 < 1. It follows that this is true for every ε between 0 and 1, so a
solution exists for each such ε, and is between 1/3 and 1/2.

As long as ε is well away from 0 and 1 (that is, the source and load resistances
are not too different in dynamic range), the solution area is well-behaved, which
indicates that small deviations (like some resistance in the inductors) will not
affect solvability. Similar, easier techniques prove similar results for n = 2 and
n = 1. Each LC ladder implies a precisely analogous mechanical smoothing
device made with springs and masses. Since three orders of smoothing will
be enough for most purposes, this should be enough for good averaging and
output quality.

As a side note, most discussions of ladder filters (e.g. [5]) concentrate on
methods of R. M. Foster, E. Cauer, and Otto Brune that involve the driving
point impedance (e.g. Z0 in (6.3)). The derivation of driving point impedance
from transfer function is alluded to but omitted in all the references I could
find, and restrictions (like all poles being distinct) seem to be on the method
rather than the result, as the above derivation makes clear.
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6.1.4 Extra cores and fine timing

The multiple timing demands that physical responsiveness requires lead to a
feature of embedded design: the desirability of multiple cores, including cores
that are independent of the operating system. This follows from a very simple
and obvious fact: A timing signal must not be delayed. But an OS by its
very nature is in charge and can impose delays. This is true even of the simplest
“real-time” OS or RTOS, the Arduino-like main program with interrupts, if
there can ever be an interrupt other than the timer interrupt (or even if there
is more than one timer).

Of course, sometimes a small delay is acceptable, because it is insignificant
compared to what is being timed. Data uptake (or mouse movement), as long
as it is combined with true, accurate timing for the data, can stand some
roughness since it is just plotting points with irregularly distributed abscissas.
On the other hand, manufacturing UART serial bits is quite demanding, and
pulse-width modulation needs to be even more precise as to switching times,
otherwise the average will suffer a lot of jitter.

Typically, a CPU or an embedded core will include “subcores” which are
dedicated to some of these timing jobs. Most chips have serial input and output
capability, for example. Bytes are on the “digital” side, and their bits, in a
certain order (big-endian or little-endian) with some padding (start bits,
stop bits), are turned into physical voltages with fixed timing. Interrupts will
not usually work for this (although I got an Inmos Transputer, with its very fast
high-priority [interrupt] response, to generate a 57.6 kilobaud serial waveform
in 1995 for the SCS Ford automotive radar). Dedicated hardware with FIFOs is
normally required. Once you understand the principles, the assembly language
specs make sense, and design is easy.

6.1.4.1 Dedicated physical driver design

We start here with the absolute lowest level piece, the one closest to the physics
of the outside world. A dedicated physical driver, with one purpose (though
possibly capturing or driving more than one signal in a coherent fashion) is
designed like my 57.6 kilobaud serial driver. It can use Field-Programmable
Gate Array (FPGA), Complex Programmable Logice Device (CPLD), and
Application-Specific Integrated Circuit (ASIC) subcores, right down to the
transistor level involving combinatorial logic (also known confusingly as combi-
national logic).

Combinatorial logic is logic whose output depends only on its input, once a
certain minimum time has passed. Hence it underlies all sequential logic, since
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it determines what happens between the clock-in of input and the clock-out
of output in a single instruction execution. This can include instructions that
take several cycles but merely let the intermediate clocks pass by without
responding to them until ready state is reached.

The key to dedicated driver design is that at any time in its operation
it has a single timing map. This can allow very limited multitasking
(for example, full-duplex serial IO with five samples per input bit coexisting
with generation of output bits at the same baud rate). The single timing
map is expressed in pseudocode as a single high-priority process within a
Transputer-style PRI PAR with only two members. That high-priority process
is instantly responsive to a timer and—here is the key design feature—its
response to each timing activation takes a short time compared to
the time between activations.

For example, a full-duplex UART serial driver ticks five times per bit, and
at each tick must determine whether to change the state of its output, and must
record any input, and determine whether it’s time to average five inputs and
generate a digital bit. All of this, plus any tick response latency, is done in a
few nanoseconds which is a small time compared with the several microseconds
(or more) between ticks.

What about the rest of the time between activations? This is “idle time”
from the point of view of the high-priority process. That means it is available
for low-priority processes in the pseudocode. The low-priority processes deal
with control input and output which must always result in a consistent
state when decisions are made about the timing map and programming of the
high-priority process. In the serial driver example, a control input could be a
new baud rate, while a control output could be notification of an illegal voltage
or waveform input.

There is a responsiveness delay in this control IO, which must be pro-
grammed precisely. Also, it is assumed, as in all computing hardware, that
metastability is not a problem, and that a decision can always be made between
two states, or about the winner of a race (such as whether the baud rate
changed before a certain new bit was input).

There is often a cascade of responsiveness in very fast hardware. For
example, the hardware of Low-Voltage Digital Signaling (LVDS) communicates
far faster than RS232 serial—it can reach gigabits per second—using
twisted-pair connections. Many hardware protocols from Spacewire to SATA
then piggyback on this, using internal FIFOs to do more complex things with
hardware protocol branching. All of this is available for Wide design, and the
simpler protocols, like Spacewire and even bare LVDS, can be faster and better
and more stable, setting the designer free from clumsy protocol libraries.
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6.1.4.2 Embedded timer queue

An embedded chip will typically contain a timer interrupt that is finer than
those associated with a standard OS. A default introduction to the MSP430
timer is found in [6]. The Kicksat uses a watchdog timer, which is pretty similar.

In Chapter 3, we discovered that the MSP430F5137 in use in the Kicksat
has a clock speed of 8MHz. A search for the function delay in the tree rooted
at /Applications/Energia.app/Contents/Resources/Java/hardware
that was mentioned in Chapter 3 finds this system routine in
msp430/cores/msp430/wiring.c, and the definition found there of
WDT_TICKS_PER_MILISECOND (note spelling) indicates that the watchdog
timer has a divider of 500 and interrupts 16000 times per second. The interrupt
code from wiring.c is shown below.

__attribute__((interrupt(WDT_VECTOR)))
void watchdog_isr (void)
{

wdtCounter++;
/* Exit from LMP3 on reti (this includes LMP0) */
__bic_status_register_on_exit(LPM3_bits);

}

The millisecond delay function simply sleeps until this interrupt fires and then
checks wdtCounter against the target value wakeTime, which it has incremented
by a multiple of 16.

This means that Energia’s delay function is sixteen times coarser than it
needs to be. We could use an MSP430F5137 to support a timer queue with
a resolution of 62.5 microseconds, instead of the 1 to 14 milliseconds offered
by Windows or Linux. A dedicated 16MHz MSP430 with the timer divider
reduced to 160 would be able to manage a timer queue with a resolution of 10
microseconds. However, the code shown below (it covers several pages) is a
timer queue with millisecond resolution.

The following code is timeq.ino and runs under Zac Manchester’s special
version of Energia. Notice the setup and loop functions. It uses a so-called
“header” file tqlib.h which is really an include of several function calls (this
is common with embedded code lacking a complex linking stage).
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{{{ timeq.ino
struct tqmember {

int tqtask;
unsigned long tqexpire;

};
struct tqmember tq[5];
#include "tqlib.h"
char output[] = " "; /* 5 chars long */
int notUnderway = 1;
unsigned long mstime = 0;
char msg[] = "Verne Rob Dan Larry ";
int msgleng = sizeof(msg);
int imsg = 0;
... void setup
... void loop
}}}

Above is the origami top view, below the folds, with the last fold split in two
views.
{{{ void setup
void setup() {
Serial.begin(9600);

}
}}}

{{{ void loop
void loop() {
unsigned long ttime, tnext;
int itop;
long delta;

if (notUnderway) {
mstime = millis();
buildTimer(0, mstime, 1); /* 0 = radio transmission */
buildTimer(1, mstime + 5000, 2); /* 1 = voltage */
buildTimer(2, mstime + 6000, 3); /* 2 = temperature */
buildTimer(3, mstime + 2200, 4); /* 3 = mag */
buildTimer(4, mstime + 3500, 5); /* 4 = gyro */
notUnderway = 0;

}
itop = topTimer();

}}}
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{{{
switch (itop) {
case 0:
output[4] = msg[imsg];
imsg++;
if (imsg >= msgleng) imsg = 0;
Serial.println(output);
memset(output, (int)’ ’, 5);
mstime = millis(); /* as in SpriteRadio */
tnext = mstime + 1000 + random(-500,500); /* as in SpriteRadio */
break;
case 1:
output[0] = ’V’;
tnext = mstime + 5000;
break;
case 2:
output[1] = ’T’;
tnext = mstime + 6000;
break;
case 3:
output[2] = ’M’;
tnext = mstime + 2200;
break;
case 4:
output[3] = ’G’;
tnext = mstime + 3500;
break;

}

replaceTimer(itop, tnext, 5); /* the same itop as got used */
ttime = timetopTimer(); /* the next guy’s time */
mstime = millis();
delta = (long)(ttime - mstime);
if (delta > 0) {
mstime = ttime;
delay(delta);

}
}
}}}

The following code is tqlib.h. It contains the machinery that runs the
timer queue. The interesting parts are buildTimer and replaceTimer. It is
worth noting that handling the timer queue requires effort in proportion to
queue length. Nevertheless, this can be quite efficient if managing a short set
of independent but interleaved timed response chains.
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{{{ tqlib.h
/* Time queue of length n is in global
* struct tqmember tq[LENGTH];
* WHERE
* struct tqmember {
* int tqtask;
* unsigned long tqexpire;
* }
*/

... void buildTimer(int task, unsigned long expire, int length)

... void replaceTimer(int task, unsigned long expire, int length)

... int topTimer(void)

... unsigned long timetopTimer(void)
}}}

Above is the origami top view, below are the folds.

{{{ void buildTimer(int task, unsigned long expire, int length)
/* length is the length of tq AFTER {task, expire} is inserted */
void buildTimer(int task, unsigned long expire, int length) {
int i = length - 2;
while ((i>=0)&&(((long)(expire-tq[i].tqexpire))<0)) {
tq[i+1] = tq[i];
i--;

}
tq[i+1] = {task, expire};

}
}}}

{{{ void replaceTimer(int task, unsigned long expire, int length)
/* Assumed: tq[0] is invalid because used, length remains same */
void replaceTimer(int task, unsigned long expire, int length) {

int i = 1;
while ((i<length)&&(((long)(expire-tq[i].tqexpire))>=0)) {
tq[i-1] = tq[i];
i++;

}
tq[i-1] = {task, expire};

}
}}}
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{{{ int topTimer(void)
int topTimer(void) {
return tq[0].tqtask;

}
}}}

{{{ unsigned long timetopTimer(void)
unsigned long timetopTimer(void) {
return tq[0].tqexpire;

}
}}}

A linked list is in theory better if the timer queue gets long, but it still
requires the linear-effort search for the insertion point, and it is actually not
more efficient for a short queue like this one. If capabilities like memmove exist,
they can be used to advantage.

6.1.5 Smooth delayer programs

The interface between the choppy action of a digital computation and the
smooth input/output relationship of a desirable physical response is the key
to high-quality embedded programming. Its lack creates hiccups in music and
pauses or fields of pixellated blocks in videos. At this point, it is clear why
solving it is not merely a problem of speed.

The key to solving this problem in general is to work from the output
backward. Several principles then appear.

6.1.5.1 (A) Continuity, smoothness, and good behavior must be
imposed on some aspects of the output

The painting of a video picture may involve the zig-zag of successive scan
lines followed by return to the top of a frame, or it may merely involve buffer
swapping, but the appearance of successive frames and their content must
certainly be stepwise smooth. Music must satisfy continuity, rhythm, and well-
shaped waveforms in several time scales, one of which is continuous rather than
fixed (the frequency spectrum). A robotic actuator responds according to the
physics of Table 6.1, a response which always involves at least two time delay
constants, and getting it right can be quite challenging. Think of moving an
egg.

“Good behavior” can often present a problem that is the opposite of
smoothness. Physical actuation is forced to pass through the smoothing effect
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Figure 6.5: Smooth delayer FIFO and response

of the analog components, a smoothing filter, and yet is required to converge
without ripple to a goal, like a distance of extension, a rotating speed, or a
force. Both the smoothing and the good behavior impose exacting requirements
on the digital-to-analog output, and place limits on its choppiness.

6.1.5.2 (B) Analog actuator components must be designed to
cooperate with the digital output

All the physical constants of Table 6.1 are available within the constraints
imposed by the physical materials and geometry. Those of form X and XT 2 are
energy-conserving, while those of form XT are dissipative and heat-producing.
The tradeoffs here are crucial, and whole libraries full of engineering experience
exist to help. Though differential equations may be challengingly mathematical,
they have one very friendly characteristic: Within the range of their good
behavior (and the designer must be sure he is within that range), their solutions
are a continuous function of their input data. Therefore design of the cases
that give the extreme results usually implies good behavior for intermediate
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cases. To be sure, internal extrema (like resonance points) are a threat.
In this stage, the possible digital outputs influence the picking of the analog

components. They cannot require a PWM duty cycle of less than 0% or greater
than 100%, for example. But once the stable analog components are picked,
their response imposes the requirements on the digital output. This includes
every requirement implied by (A).

6.1.5.3 (C) Every case must produce an acceptable result

Once again, let me emphasize: there are no exceptions! Power loss, com-
ponent failure, input “going nuts,” and spilled coffee are all normal digital
inputs to a good design. Here is where Wide foundations permit the designer
to branch out. A Wide piece exists in time and has well-defined points of
input and output. They can be monitored by spy pieces and, when craziness is
detected, branch to an alternate path.

The key principle here is that alternate paths must be insensitive to each
other’s failure modes. When the Ariane V booster rocket’s controller went
crazy in 1996, due to an integer overflow, another system detected it and
switched control to the backup, which had exactly the same programming
and immediately went crazy in the same way. (Loss: $750,000,000.) Often the
backup is a cruder, more “analog” control mechanism that produces a canned
output that, though of lower quality, gets the job done.

6.1.5.4 (D) Input-to-output delays are inevitable and must be
designed in

This is the single best component addition to avoid “hiccups.” It requires
careful analysis of unavoidable delay patterns, and may even involve feedback
within the program, to catch the case, for instance, when the so-called “new
and improved” OS has a coarser timer and increased latency. The actuation
is then made to lag the input by a fixed (or very smoothly low-pass filtered)
delay that is longer than the worst normal enforced delay, where “normal” is
within ranges that do not cut over to one of the backup machines of (C).

This is not as simple as it sounds. It always requires a big enough FIFO
(compare Figure 6.5), which is not usually a challenge these days, but also the
output from the FIFO must be of constant delay. That could be done like a
metered freeway entrance, but this could require too fine a timer resolution for
the central CPU, at least for audio. As a rule, smart output pieces ought to
receive batches of data at a time and spread the corresponding DAC responses
by carefully controlled time intervals.
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6.1.5.5 Summary

The result of all the above should be that the digital side of the output coding,
right at the actuator, should receive data that is natural in value and relative
timing. “Natural” means that it is equivalent to what an ideal, delay-free
analog connection could create. Usually, that is not hard to determine (check
the output of high-quality pre-digital technology).

This principle is rather obvious, but is rarely satisfied in the real world.
Because of that fact, there is an ironic resurgence of genuine analog devices,
for instance in the synthesizer world (see [8]). This quality surge would be
much bigger if smooth delayers built with inexpensive digital parts and Wide
technology were placed on the market.

6.2 Simple and universal operating systems
Having arranged our tasks on a time scaffolding, as described in the previous
section, we can now make the flying leap to an operating system. Not just
a small, half-crippled operating system that can do a few toy projects, but
an operating system that can handle any problem of whatever weight and
complexity.

6.2.1 Simple execution

For over thirty years, microprocessors (and earlier computing chips such as bit-
slice processors) have been capable of millions of computing cycles per second.
This is much faster than human-scale responses, and usually fast enough to
deal with the physics of things (like music) relating to the human response, at
least with the proper analog hardware support. In addition, the instruction
breadth has been enough to handle dozens of independent connections, whether
digital or analog. By 1980 the basics of computing as we know it were laid.

The unit of higher computing was, and is, the clocked instruction. Its
incoming state includes an instruction bit pattern which, after a cycle or
integer number of cycles, produces an outgoing state including “jumping”
to a next instruction. Usually the jump falls down a list, but sometimes it
“branches” elsewhere. Coherent tables of such jump consequences (with the
rest of their state dependencies and consequences) form a microassembly or
assembly program. By “coherent” is meant that the program starts, performs
some understandable action or set of actions, and then terminates. “Start” can
be reset or branch in, “terminate” can be fail (e.g. power off) or branch out, so
these programs can be nested.
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It became clear very early on that most computing devices had to multitask
among independent stimuli. (This is true even in the simplest embedded
systems.) From early times, “the program” and “its understandable action or set
of actions” was understood restrictively, to mean those directly involved in the
specific design purpose. Therefore not every instruction of “the program” was
followed immediately by a next instruction of “the program.” Instead, depending
on state, it was possible for side programming to be executed according to
need, followed by a return to that next instruction of “the program.” These
branches to the side were controlled by polling or by interrupts.

There is no essential difference between polling and interrupts. An interrupt
is just hardware polling that happens every instruction. For yet another principle
came to be understood: the “side programming” stimuli often were the “quick
response” stimuli. That part of the computing that was “under the radar” of
the main task was often the very part that needed immediate response, at
faster than human interface speeds.

These are the only assumptions needed for a so-called single-tasking operat-
ing system, whether dependent like Arduino or self-sufficient like MS-DOS.

The reason I say “so-called” is that if interrupts are allowed, it is not
really single-tasking. The externally stimulated interrupt code is not executed
consequentially to the main code, so it is really a separate task. Once you think
like that, interrupt coding including for multiple interrupts begins to make
sense—as Wide programming.

6.2.2 Sesquitasking operating systems

I have invented the name “sesquitasking” for the OS that is being justified
here. This uses the Latin prefix sesqui which means “one and a half.” (You
may have heard of a “sesquicentennial” or 150-year anniversary.) Thus I intend
it to fall between single-tasking and multitasking.

As I noted in the previous subsection, these are usually called single-
tasking, but in fact asynchronous interrupt response amounts to a separate
task, or tasks. Truly single-tasking OSs like Ian Hirschsohn’s PORT (see [3])
require a supplementary processor (Peripheral Processing Unit) to deal with
asynchronous IO. Sesquitasking OSs include setup/loop systems like Arduino
and Energia, and bare-bones master systems like DOS, as long as they allow
interruption. They are the backbone of embedded systems.

Figure 6.6, which came from my old paper [2], shows such a system’s
timeline. Although the main program (W) and the interrupts and Terminate-
and-Stay-Resident or “TSR” programs (T) are shown running in parallel, they
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Figure 6.6: Sesquitasking operating system timeline

can actually multitask, and progress in a “dotted timeline” with only one using
the CPU at a time.

Simplest is to think of a setup/loop embedded system. The setup code is
called once after reset or power-up, and after that the loop code spins tightly.
Such code is used in the Kicksat Sprite, and myriad other embedded projects,
with a few globals (like indices in an array) surviving from one loop instance
to the next. But the situation is actually a little more involved than that.

First, setup and loop are not the only code. There is also the interrupt
response code. That includes code that responds to a clock tick, so it’s implicit
in “straightforward” calls (like sleep or delay) which wait a specific time,
even if there’s no user IO to the satellite.

More subtly, embedded chips almost always support low power modes.
Compare [4]. The “tight” main loop itself, even if not directly dependent on
an input, will normally be programmed by a command like
_BIS_SR(LPMx_bits | GIE);
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Figure 6.7: Sesquitasking OS resource allocation

to “go to sleep” when not busy, and wake up only when an interrupt, any
interrupt, is detected.

Figure 6.7, also from [2], amounts to a cut orthogonal to Figure 6.6. At
a certain time, it shows the subdivision of “space” among the current tasks.
From this point of view, there is never a “dotted time-
line”. A task’s ownership of resources remains valid, even if it is not running
at the moment, as long as it is between the running of one instruction and
the next, because from the task’s point of view the instructions immediately
follow each other with consistent state. Resources can include memory, pins,
registers, interrupts, DMA slots, and similar.

Implementing Figure 6.7 in embedded code is regarded as just common
sense. For example, setup of timeq calls Serial.begin which is clearly the
initialization code (the upslope in Figure 6.6) of a Serial handler, which
will manipulate specific pins and addresses connected with a serial Universal
Asynchronous Receiver-Transmitter (UART) port. In DOS COM1 it would be
register addresses 0x3F8-0x3FF, while in the MSP430F5137 UCA0 it would be
0x05C0-0x05DF (in file periph.x). Any such peripheral has its own “methods,”
normally documented in C or assembly, with several setup and driver routines
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Figure 6.8: Tracker state machine

and ISRs, but they always follow a Wide, not an object-oriented, design. They
restrict themselves to addresses proper to their “territory,” respond as quickly
as possible, and get out of the way as quickly as possible.

The main tasks (“loop” or main programs) usually use reassignable, generic
memory and other resources, and are labeled Wild (W) in the two figures. The
half-tasks (ISRs and TSRs, with their related programming such as setup)
usually use fixed, limited address spaces and specific “hard” resources like pins,
and are labeled Tame (T) in the figures. They can borrow resources (e.g. data
records) from Wild tasks for driver work.

A fully designed sesquitasking operating system simply applies this approach
consistently everywhere. With proper hardware, a sesquitasking OS
with Wide features can do any project, no matter how fast, no
matter how demanding of memory, and no matter how complex.
Limits like the 1MB DOS limit and the low clock speed of some embedded chips
are completely device-based and there is no limit on the general methodology.
The entire problem is due to lazy programmers’ use of fixed word widths and
address spaces when defining their OSs. A 64-bit DOS that runs on a 2GHz
core driving a 4096 by 2304 screen would be a straightforward conversion
exercise for some graduate student or hobbyist—using a real-memory, Ring
0 chip setting like System Management Mode (SMM) (see [11]). Adding the
features developed in [2] allows priority multitasking. With a little Wide design
and a few occam-like communication primitives, you could put a sesquitasker,
specialized or generic, on each one of the cores of a multicore chip.
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6.2.3 Embedded example: tracker

A basic celestial tracker is a good example of an embedded project that shows
the kind of design complexity to be expected here. I will deliberately avoid
converging on specific hardware, only showing how the state machine’s impli-
cations lead to implied needs that direct the designer’s attention toward the
proper hardware.

The tracker is to use feedback to track an object (star, planet, satellite,
even bird) around the celestial sphere. The assumption is that the object moves
smoothly (continuous position and velocity, with bounded rate of change of
velocity), but not necessarily predictably, and is usually distinguishable by
contrast with its surroundings. The tracker moves an alt-azimuth imaging
device (CCD camera or telescope) to image a small part of the celestial sphere,
presumably including the target.

6.2.3.1 State machine

When powered on and fully booted up, the tracker has three phases:
(A) Idle: Release is on, Manual is off, and the tracker is not aimed;
(B) Forced: Release is off, Manual is on, and the tracker is pointed according
to user input from a console;
(C) Tracking: Release is off, Manual is off, and the tracker is following a selected
target.

When in the Tracking phase, two states are possible (Figure 6.8):
(C1) Locked on: The target is identified and centered in the field of view;
(C2) Dead reckoning: The target is not distinguishable by the programming,
but is being followed by continuity.

Dead reckoning happens, for instance, if a bird flies behind a tree, or a
planet being followed is occulted by the Moon. It may drop to Idle if a decision
is made that the target has been lost (has evaded the tracker). In any case,
the user can release the tracker, sending it to Idle.

6.2.3.2 Wide pieces and possible implementations

The state machine and functionality description can be carried out by the
Wide pieces of Figure 6.9. Although each piece has an independent existence,
running in parallel with the others, it can itself break down into two or more
independent pieces, depending on implementation. So Figure 6.9 is a necessary,
coarse breakdown.

It may appear that the distinction between Math andMaster is not necessary.
A little reflection proves that it is, as long as Math operations may require a
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Figure 6.9: Wide piece diagram of Tracker

long period of time, too long for the hardware interrupts to wait. In essence,
Math must be a “low-priority process” capable of giving way to any urgent,
time-critical interactions with the physical world. The Master code which
handles the interactions of all the other pieces must be highly responsive and
is different in kind to the code that does Math. To merge Math and Master in
the same “superloop” requires breaking up Math into short-duration blocks,
while distributing Master among the other pieces requires repeating its code
among several ISRs—both quite difficult. The separation shown in Figure 6.9
warns of this.

The implementations can be on one or several CPUs and can use any
language or lack thereof. A conventional modern UI will normally bring with it
a tablet or similar computer. The hardware implied by the upper three pieces
on the left will normally be mounted on the physical device, requiring at least
one embedded CPU for its high-speed operation. Where Math, Master, and
Output live must then be settled.

Because Math is low-priority, one sesquitasking system, unless specifically
designed for Wide use with TSRs (see [2]), is usually not satisfactory for
everything to the left of the UI, as it pushes Master into ISRs as I said above.
A common approach, given a responsive multitasking system on the tablet, is
to put Math and Master (and probably Output, if that means something on
the network) on the tablet.

It’s important to note that responsive multitasking excludes some of
the Object Oriented languages/systems on the market, because they are willing
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to talk only to communications on their “approved list,” and insist (via garbage
collection, interface specifications, etc) on controlling how responsive they will
be to approved communications.

Prioritizing the Math is also needed. Linux and other Unices, using nice,
make this fairly easy, if you examine the specs carefully. It can be done in
Windows too, with a little more effort (see [9]). Thus it’s clear that any flavor
of Linux or Unix is OK, and (desktop-type) Windows can be made to work, but
whether one of the Java-based systems like Android will function requires close
examination, which I have not done. I’m also in doubt about iOS, although at
least desktop Mac runs over a version of BSD, a Unix-like system. The problem
is that iOS has multiple abstraction layers that may mask access to responsive
connels.

The test, in every case, is to set up sockets, serial IO, and/or pipes and see
how responsive they are when a standard UI is running over them. In the case
of Windows and Linux, Connel offers the tools to handle the non-UI part of
this programming. The UI (in whatever language) must support the other end
of the communications (internal ones are usually sockets).

The programmer’s main initial task is to make sure this machinery runs
properly. Difficulties I have seen can arise from inputs separated by time
intervals, which Object Oriented UI systems may decide to “batch” and send
several of them through at the very end (perhaps only at the end of the
entire run). Other difficulties come from Object Oriented implementations that
amount to nested callbacks, which can collide with a maximum stack depth.
Superloops are better in this respect.

The programmer will discover, upon close examination, that most modern
event-based (GUI-centered) OSs have a hidden superloop structure. Often
it is possible to reach into this and modify it to be friendly to inputs and
sequences that were not thought of when it was designed. For this reason, I
favor open-source OSs when possible.

When testing this responsiveness, all the off-tablet (embedded) pieces
should be simulated by processes in a multitasking OS that communicate to
the Master, generating (or accepting) realistic data with realistic timing. I
found it convenient to have my multitasking OS running under VMWare, and
to set up a second multitasking OS under VMWare, where the “embedded
simulators” lived. That way the two could communicate via serial connections,
the same as the ultimate Bluetooth hardware would.
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6.2.3.3 Wide pieces, FIFOs, and embedded chips

At the same time, something has to be coded to drive the real hardware. This
would be CCD, Motor1, and Motor2 (and maybe Output). All of them have
unforgiving timing requirements, and therefore may need dedicated cores or
subcores. Large companies like TI and Microchip Technology sell a vast array
of embedded chips that are of the same basic design but offer this or that
subcore to allow (for example) radio signal generation or CCD data capture.
Another option is to roll your own, using logic design of the FPGA or CPLD
type. This is much less expensive and difficult than it used to be.

Wherever demanding timing exists on one side (the physical side) of a link,
and less responsive general-purpose programming serves it on the other side
(the embedded CPU side) of the link, FIFOs are needed. These are designed
into the fast-logic side. Since they are finite and small in most cases, the task
of programming the CPU side is still pretty demanding. The FIFO should
normally vary from 1/4 to 3/4 full, which determines the initial delay and the
variation in data flow.

A standard CPU chip or board, such as a Microchip Technology PIC, a TI
MSP430, an Arduino, or a Raspberry Pi, can support at least a sesquitasking
OS-equivalent by using a superloop and a set of ISRs. If there is any doubt
about responsiveness, use more than one CPU—they are cheap. The CPU
will also have to be responsive to communication to and from the Master on
the tablet, usually via Bluetooth or other version of serial. (Communication
between CPU and FPGA/CPLD may use some on-board fast protocol like
I2C or SPI.)

At the point where an embedded CPU communicates with the Master,
there has to be a packet protocol. Devising a packet protocol is an additive
process, building up messages that are flagged by tags, and making sure there
is some way of getting back on track after a corrupted or invalid message is
received. For ideas, consult any major open-source embedded project like the
RepRap 3D printer.

Usually, communication is bidirectional, often with a dominating direction
(solid lines in Figure 6.9). However, there may be more kinds of packets going
in the “other” direction! A realistic protocol set should be one of the earliest
things built in a project. This will imply a data flow, which may be heavily
dominated by only a single message type (such as CCD in this case).
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6.3 Details of embedded design
When you, the programmer, need to perform an embedded task, the huge
world of available tools is best approached, as it were, backward. First, a survey
of the tasks, or the kinds of tasks, that are accomplished by the embedded
project. Then, the unified capabilities (OSs, protocols or cores) that address
the needs of these projects. Finally, the part offered by this book: the Wide
code organization that makes sense of all of these capabilities.

In the previous section I went over the first of these, for a sample project,
the tracker. This section will focus on embedded capabilities, viewing them
through the Wide code organization. I will pass over much, and focus on some
CPUs that I am familiar with; and in some cases, I will have to allude to what
is outside my experience. In my projects, others have done the closest-to-the-
metal work, such as CPLD chip design and I2C, and my knowledge there is
derivative. However, all of it is available in inexpensive self-teaching kits and
Web-accessible tools now.

6.3.1 Embedded CPUs

I will survey a few microcontroller families (certainly not exhaustively) and
then focus on the capabilities of one family, the Texas Instruments MSP430,
with which I am most recently familiar. The capabilities found on the MSP430
correspond pretty closely with what other families offer, because of the design
needs satisfied by embedded chips, which are Wide design needs.

A microcontroller is distinguished from a microprocessor (or standard CPU
like the X86) by having many control capabilities and embedded features
directly on-chip. Typically, however, they do not have a floating point unit
on-chip.

6.3.1.1 Some microcontrollers

A survey of Wikipedia or other general sources will offer a large number of
microcontroller families, a few of which I will mention here.

The Microchip Technology PIC has an orthogonal instruction set, as few
as 35 instructions, and a Harvard architecture.

The Texas Instruments MSP430 has a CISC instruction set highly reminis-
cent of the DOS X86 instructions, and supports standard C compilation. It is
the CPU of Energia, an Arduino lookalike, and is used in the Kicksat project
Sprite satellites.
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The ARM family of microcontrollers focuses on high-end, 32-bit applications.
They bridge the gap to standard CPUs.

The Atmel family of microcontrollers includes the CPU of Arduino.
The Intel 8051 series uses Harvard architecture, code separate from data,

which protects against new code and therefore against malware.

6.3.1.2 Architectures

Each family of microcontrollers has a basic architecture, often in some way
characteristic, but there are certain standard features that may go one way or
the other.

Memory spaces differ. Some microcontrollers have a Harvard architecture,
which has code and data on different buses and even with different word
lengths, though most have the conventional Princeton architecture familiar
from standard CPUs like the X86. Even these may have specialized memory
regions like “flash.” Most treat pins and registers differently from standard
memory, but a few (e.g. PICs) have orthogonal instruction sets that do not.

The Reduced Instruction Set Computing (RISC) versus Complex Instruc-
tion Set Computing (CISC) divide is not as well-defined as it once was, but is
still notable. CISC offers many memory modes, direct and indirect, as well as
register operations, while RISC is “load/store,” separating memory operations
from arithmetic/logical unit (ALU) ones. RISC may offer instruction-level
parallelism, letting one ALU operation happen at the same time that another
memory access is completing. Vector operations need RISC features.

A third architectural difference of emphasis is feature depth. Some micro-
controllers have few specialized features, just pins that can be supported by
external logic, while others are feature-rich. Some microcontrollers, like the
PICs, have bare-bones instructions while others lean toward abstraction by
supporting stacks, indirect instructions and the like.

6.3.1.3 Memory, write phasing and security

Memory organization in an embedded processor is usually more complex than
in a standard, high-level CPU. For one thing, most high-level CPUs have a
Princeton architecture, so that both code and data live in one memory space,
while many embedded chips have a Harvard architecture. Even those which
do not must deal with the fact that code cannot be reloaded every power-up.
In addition, there are further subdivisions which are present, but usually not
very visible, in high-level CPUs.
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Figure 6.10: Memory write phases in a typical microcontroller

Figure 6.10 offers a minimalistic example of the consequences. Some memory
contents, such as code and necessary constants, must survive power-down, but
requiring all memory to survive power-down would cause technical problems.
(That kind of memory, called “flash,” has very slow write cycles, and can
survive only a limited number of them, perhaps 50,000. I show “Program
Flash” although different technologies, like PROM or EEPROM, may be used
here. Another, older solution is “CMOS RAM,” but that requires a battery
trickle-current.) Therefore there must be (at least) two phases of writing to
memory. In the first (code-writing) phase, a tiny, unchangeable program in
hardware logic (H) directs “PROM burning,” flash loading, or “network loading”
(if done without flash, the latter is called “netbooting”). In the second phase,
the chip boots to the code that was loaded in the first phase. A jumper (i.e.
single readable bit) may distinguish between these, or a less secure method,
like a special setting before reboot.

Further distinctions are found on Figure 6.10. In Phase 2, I show part A
of the flash, including the code, becoming read-only—an elementary security
precaution. (Not all the flash can be read-only, otherwise the program could
store no information across power-downs. Notice that even Phase 1 must write
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something to the writable flash B, or else the first run of the program will have
random constants.) A further distinction is between general-purpose Randomly
Accessible Memory, or RAM (D), and (addressable) registers (C). The latter
include all external status and IO, plus many other control registers required
by state machines like serial protocols. (If they aren’t addressable, then they
need separate instructions, which would clutter up the instruction space.) Such
registers and other startup values cannot be part of a program load in Phase
2, since there is no program load, so they must be initialized by an early part
of the program run. This is concealed by languages like C, but you can find
this initialization code if you expand the load image as assembly code.

Security is addressed in the same context. Network loading is inherently
insecure, especially netbooting, but is often permitted for convenience since
the code versions are changed often. More secure is PROM burning, which at
least requires physical access, and most secure is the chip that allows that to
take place only once.

Another approach to security is a Memory Management Unit (MMU),
which, like memory protection in an OS-level CPU, imposes restrictions on
what may or may not be written (or read) when the program is in certain states.
An MMU is found in some heavyweight ARM chips, for instance, but they are
more like standard CPUs than embedded ones anyway. The MMU-based chips
are found at the heart of devices like smartphones whose software is continually
being updated. Because of its complexity, and its conflict with ease of use, this
security approach is usually “full of holes,” and real danger points are better
hard-coded.

That fact is a huge, if unrealized, point of value for
Wide coding, which permits hard-coding of component
pieces without freezing the program version or func-
tionality. With Deep approaches, each upgrade places the entire device,
including its physical drivers, at risk of malware. Recent huge exploits like
BlackPOS, affecting upwards of a hundred million credit card users at Target
and elsewhere, have illustrated this.

6.3.1.4 Sleep states and power management

Many if not most embedded processors have to conserve power, because their
power source—battery, solar, even motion—is very limited. Even the most
advanced chips, like ARMs in smartphones, are built to extend battery life. To
support this, sleep states are introduced.

Sleep states are a form of layered Wide programming. Whole sections of
the CPU and the external pins can be shut off, leaving a few stimuli live. In
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particular, clocks can be shut off, so that the device is not running a polling
loop to no purpose when inactive. When this is done, the device must be
awakened by a stimulus which, at least from the point of view of the sleeping
part (i.e. most of it), is asynchronous.

Clearly, there are tradeoffs here, and most embedded devices offer several
sleep options. One may be so extreme as to lead to a full reset when awakened. In
other cases, the code, an example of which is given above under “Sesquitasking
operating systems,” is run within the process that is to go to sleep, as the
last non-branching instruction of its previous low-priority activity. This is a
single instruction, but just happens to take a very long time to execute. It does
not complete until the wakeup stimulus is received. The first full instruction
executed after wakeup is thus often a branch instruction (like the one implied
by the end of a C while loop) to the top of the “awakened” code.

6.3.1.5 GPIO pins, tristate and power needs

The General-Purpose Input/Output (GPIO) pins that bristle out around
the edge of an embedded chip (or connect with the ball grid under it) are
addressable by the code run on the chip. In many cases, they take or accept
digital (two-valued) values, while in others analog (many-valued or continuous)
values are input or output.

The digital IO pins, especially when arranged eight to a register, look a lot
like single digital bits, but there is a major distinction. The power requirements
of a bit of memory are exceedingly small, driving only a microscopic transistor.
The power requirements of an external pin are relatively huge, turning electricity
into heat. These are therefore called driver pins.

Output pins are low-impedance, and the internal logic of the chip should set
them to a specific voltage. Input pins are high-impedance or tristated, and the
internal logic of the chip is ready to read the value of their voltage. “Tristate”
( c© National Semiconductor) refers to the possibility of high, low, or “floating,”
meaning undriven. Of pins shorted together in a circuit, at most one must be
low-impedance at any time, otherwise the pin or the whole chip or board may
be FRIED due to disagreement among the drivers as to what the voltage
should be.

A high-impedance pin should only be read if one of its connected pins is
being driven (is low-impedance). Floating reads are bad. This is why reads of
pin-valued registers are usually ANDed with a map of bits; the chip only looks
at those pins ANDed with 1. Similarly, commands exist to switch a pin between
READ (input or high-impedance) and WRITE (output or low-impedance),
and attempts to write will only affect the WRITE pins.
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In theory, a single WRITE pin could drive any number of READ pins, but
in practice, this is limited to a number called the fan-out, usually around four.

6.3.1.6 Reset, interrupts, clocks, and crystal

Reset happens when the chip is powered up (“hard”), and under other (“soft”)
conditions, including the extreme sleep mentioned above. It’s a slow process,
since when it starts, the power distribution and the clock are not functional.
There are several levels of reset in the MSP430.

Once reset has happened, and sleep has not happened, a clock begins. (A
clock is to be distinguished from a timer—the latter counts up the ticks of
the former, as in Figure 6.11, and performs interrupts and other jobs when a
countdown is reached.) The clock is the metronome of the sequential behavior
of the CPU, and is the fastest time rhythm the CPU can achieve. Often, an
embedded CPU will support more than one clock, used for different power
levels, for example.

The CPU contains multiple internal oscillators of differing power consump-
tion, speed, and accuracy. In addition, an external crystal can be attached
if very high accuracy is required. Techniques for switching from one clock to
another are available. Each clock produces a sharp square wave signal of duty
cycle about 50%, and has an associated counter.

Interrupts are a branching mechanism responding to asynchronous stimuli,
though in the case of a sleep state, they take on some of the character of a reset.
Thus, if the chip is asleep, the awakening event causes the sleep instruction to
complete, then the interrupt code is executed (which requires a wait to avoid
metastability, plus saving and restoring some state), then the branch happens
in the main code. Because interrupts are, by default, disabled within Interrupt
Service Routines (ISRs), interruption amounts to a two-priority system of
multitasked code.

6.3.1.7 RAM, DMA and block writes

Randomly-addressable memory is the central resource of almost all CPUs, and
continues to play an important role in embedded code. Compute-intensive
operations typically shift some data into registers and munch away at it,
but data-intensive and memory-intensive operations can profit from some
parallelism. This almost always involves moving data in blocks while either
using the CPU for something else, or (specialty of embedded processors) leaving
the CPU asleep.
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Figure 6.11: Typical PWM generation using compare output

Direct Memory Access (DMA) is the classic solution. Setting up certain
registers allows counting of the data as it moves from one place to another. DMA
“steals” cycles, so the MSP430 CPU operates at most at 20% efficiency while
doing it. (Other chips may differ.) Nonetheless, the MSP430 documentation
claims efficiency gains for I2C (external) IO, and for both the ADC and DAC,
even generating a tabulated waveform voltage output.

Once a DMA transmission is triggered, something must notify the code
when it finishes. Typically an interrupt is used for this purpose.

6.3.1.8 Timers, watchdog, PWM, capture and compare

In each active timer, a cycle count increments or decrements by 1 each time
the system clock ticks, and triggers action (such as an interrupt or PWM edge)
whenever it reaches an extreme. By setting the extreme, an accurate period can
be forced on it. There are several ways this can be done. By deactivating the
timer for a few cycles, typically within its own ISR, it can easily be adjusted
quite frequently. The current cycle count can be read at any time.

A key specialized timer is the watchdog, which has a default behavior of
resetting the whole chip if it counts down. If used this way, code should be
inserted that frequently resets the watchdog, which is thus prevented from
timing out unless an undesired tight loop or branch into the “weeds” indicates
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a code error. More typically, the watchdog is disabled and this timer can then
be used as a standard timer.

Compare sets up a non-extreme value and outputs a signal (typically an
edge) each time the current cycle count meets that value. See Figure 6.11 for
an example of one of several ways this can be done. As long as the value is
well away from the extremes, it is easy to change it during a few cycles well
away from the triggering values (that is, just after a triggering value has been
reached). To help with this, interrupts can be set up. This permits PWM
values to track changing targets.

Capture inputs an analog timing (sharp-edged) signal and outputs the
current value of the timer’s cycle counter. By combining this with a value that
is incremented by 1 each time the timer’s cycle counter finishes counting up,
highly accurate long-term cycle-counted time can be captured.

6.3.1.9 REF, ADC, DAC, and multiplexing

The voltage reference is an analog output that can take several values, which
are true voltages over GND, and not just a percent of the VCC at which the
chip is run. This is used in designs involving both the ADC and the DAC.

The ADC spends a short time (perhaps 10 microseconds) converging to
an input voltage, and compares it to two extreme voltages, typically GND
and VREF. It outputs an integer in a linear range, thus serving as a very fast
voltmeter. Interrupt and DMA are at its service to get this data to where
it needs to go. Analog hardware, like a temperature sensor, may be on chip
to drive it, or extra analog hardware can be added by the designer. In the
MSP430, an analog multiplexer (input selector) is available to feed one of
several analog pin inputs to one ADC.

The DAC does the opposite task, creating an output voltage based on two
extremes and an input integer. This may go to LED, sound or other actuators.
Often the task of the DAC can be done equally well using PWM and a physical
smoothing filter.

6.3.1.10 UART, SPI, and I2C

The UART (standard serial) has two IO pins and can support a baud rate up
to 460.8kbaud, depending on the clock speed of the processor. It uses majority
vote on the receiver, is asynchronous, and can be full duplex or half duplex. It’s
capable of autobaud and even of a special address/data protocol for multiple
connections, though the latter seems nonstandard.
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The Serial Peripheral Interface (SPI) is the fastest available off-CPU com-
munication, point-to-point only and full-duplex if desired. One end is master,
the other slave, and it can go as fast as the system clock, but has to be syn-
chronous. It uses 3 or 4 pins. Multiple slaves can coexist by using a slave select
line.

I2C maxes out at 400kbaud (400kbps) and uses 2 pins. It is a true arbitrated
bus, and any device on it can become master and generate the clock. The master
can either transmit or receive (half duplex) at any given time. Addressing is
used, and low-power operation is possible. When one communicator is master, it
can address and talk to any of the others as slave, and they must be prepared for
this. The I2C protocol is noticeably more complex than SPI, but is economical
in pin count.

These are the typical choices on most microcontrollers, but some of the
details may vary.

6.3.1.11 In-circuit programming and debugging

The versions of embedded chips that are used for active code development
normally have a few extra pins used for In-Circuit Emulator (ICE) or Joint
Test Action Group (JTAG) debugging. (A variant on this which uses fewer
pins is Spy-Bi-Wire.) These are connected to board traces that lead to board
edge connectors that can be hooked up to debugging boards, which usually
communicate, via USB or similar, to systems running debugging code. This
kind of work is for obvious reasons associated with a loader that can re-flash the
code that is to run on the embedded chip. Both the loader and the debugger
are typically found in the same program on a desktop or laptop OS system.

The debugging board, like an Olimex, is a small thing that lives inside what
looks like a connector or dongle. The software, like mspdebug running in Linux
for the MSP430 family, knows how to drive this board (see the subsection
on development toolsets in the Tools chapter). The debugging board is to
be distinguished sharply from the board under test, with the latter usually
running normal code at full speed except when a breakpoint is met or the user
forces a halt. Then a lot of files that have already been prepared on the OS
system swing into action, and data is pulled off the embedded chip, or even
pushed onto it.

If watchpoints have been set, the embedded code will usually run slower
than normal because registers or memory locations have to be checked every
assembly, or C, instruction. Obviously some design thought has to go into using
this, especially if physical things like motors are dependent on the timing.
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6.3.1.12 USB and Ethernet

In many higher-level embedded chips, higher-level communication protocols
are supported. This goes especially for chips which “naturally” live in a certain
board or device, like a smartphone. If the chip is to be designed into a board
that you are making, then its support of something like USB will require a lot
of careful board design and probably supporting hardware.

The MSP430, for instance, can offer a “USB device” on-chip, where this
term is carefully defined in distinction from the general term “device.” A USB
device is a slave, as opposed to a USB host (master). Independent power and
clock are supported, and it has its own memory buffer, so this USB device core
really is a distinct hardware piece. In fact, it can supply power to the rest of
the MSP430 system.

40 pages in the manual are dedicated to this specification, and similar
depth is required for other protocols, like Ethernet. However, these designs are
always driven by usability, so there is always a hardware and software “recipe”
that, if followed slavishly, will make it possible to “bring up” a reasonably
functional communication. This process essentially amounts to fitting both
hardware and software into a Wide data-flow design, with the ultimate use in
mind. Difficulties typically only arise when the protocol is driven counter to its
design (for example, trying to make USB peer-to-peer when it was designed to
be master-slave).

6.3.1.13 Optional extras like accelerometers

Optional extras may be found in the chip, such as the radio capabilities of the
MSP430F5137 (which includes CC1101 radio), or they may involve connecting
up to an auxiliary chip such as an accelerometer, as in [10]. In the former case,
space in the pinout, the register map, sometimes special memory buffers, and
power and timing requirements are to be found in the CPU’s spec. In the latter
case, an “apnote” gives guidance for hooking up CPU and auxiliary chip(s).

The accelerometer case is interesting because it shows some of the lower-
level capabilities at work. In this case an ADC12 with multiplexing brings in
several directional data values from the accelerometer chip at timed intervals.
This is because pins are usually a more plentiful resource than ADCs. Of
course, the handling of such data as is received is done by code which must
be designed very carefully, not only from a data-flow point of view, but also
mathematically. Frequently, a special setup procedure must be used to “train”
the device to function in its real environment.

272



6.3. Details of embedded design

6.3.1.14 Summary

In this subsection on Embedded CPUs, we have just gone through dozens of
particular functions and CPU core areas. If you look at each one carefully, you
will see that each behaves as a Wide piece, owning certain resources and
receiving and transmitting certain data and control signals over time. This
Wide behavior is nested, from the lowliest byte of RAM up through the DMA
engine to ADC and accelerometer, for instance.

Because the subunits of an embedded CPU and its auxiliary chips can
be treated as communicating Wide pieces, two consequences follow. First,
designs using them can follow the Waves described in this book, and the speeds
and specifications will be your friend in making sure they reach your goal.
(Transputer designers in the 1980s actually used this approach, in occam, to
create from scratch a floating point unit for their chips.) Second, after they
have reached goal, the side-effect-free Wide character of a complex assembly
of such designs (a big piece put together out of little pieces) means that you
can be at rest once that assembly is complete. It will go on working, and other
things next to it will work properly too. And its behavior can be described in
detail and rigorously.

6.3.2 Beyond the embedded CPU

This is the stuff that bridges the gap between toy and real! Here Arduino and
Raspberry Pi can fall short, because you can only drive what their boards
allow you to drive. When you are doing a serious project involving motors or
fast buffering, it frequently makes sense to design your own board and create
your own physical edge logic. This is not the Boeing-scale money sink it once
was. One-off or small quantity board fabrication can be found on the Web and
the price be as low as a few hundred dollars.

6.3.2.1 Board design, wiring, potting and connectors

To the two normally mentioned parts of board design—placement and routing—
I add a third, shaping. The design of the board should be a spiral process, like
the Waves elsewhere in Wide design, because an embedded board essentially
lives in the outside world function that it serves. Thus, the electrical and
connectivity demands on board function must converge with size, shape and
robustness as demanded by the physics. Think of medical devices.

The routing of the wiring is determined by the placement of the components.
In doing these, you must already go beyond digital. The impedance of the
traces matters, and there are several tradeoffs, especially if the signals are
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high-frequency (corners are bad!). Skillful hand routing can often lead to a
two-layer board, including big power and ground areas; this reduces cost a lot,
and increases robustness. Vias (through-holes) are a heavy cost, but usually
cannot be avoided. It’s worth redoing the placement and routing several times
to improve these factors.

Despite over-the-air protocols like Bluetooth, connectors are almost always
necessary, for data as well as for power. It’s usually desirable that connectors be
keyed, that is, so designed that incorrectly oriented mating is impossible. Power
connectors, and connectors designed for hot-swapping, should be designed so
that ground makes contact first, and static discharge can happen without doing
damage. The process of plugging in a connector is a slow one, with bouncing
voltages and currents, and this must be reflected in embedded coding, often by
a delay circuit. Frequently, analog connectors have a special low-impedance
design, using gold and other anti-corrosion coatings, because exact voltage
matchup is more important for analog.

There is no need to be restricted to conventional board shapes, though their
part accessibility is typically best for development. “Potting” (solid filling) can
be used to protect the components and/or change the shape of the completed
board to something physically robust. When that is not necessary, a “conformal
coating” may be applied as a manufacturing step. Heat flow analysis is often
of great importance, and heat can be channeled by materials of high or low
heat conductivity.

6.3.2.2 Driver logic: FPGA, CPLD, and ASIC

Within the circuit, connectivity runs from the CPU on one side to whatever
meets the physical world on the other. Even an embedded CPU often cannot
meet all the timing demands implied by its functions, so some extra driver
logic is frequently needed. This is the lowest level of programming normally
encountered.

FPGA and CPLD, plus older arrays like PAL and GAL, are general-purpose.
An FPGA is field-programmable (does not need re-burning to change the
software) and often includes micro-cores. A CPLD, by contrast, has non-volatile
memory and functions without aid at system startup. They are both sizable
now, with thousands or tens of thousands of gates. They are programmed
by Hardware Description Languages (HDLs), of which the most popular are
Verilog and VHDL. If a higher-level HDL is desired, I recommend Handel-C,
which is really a variant of occam and hence natural for Wide programming.
SystemC is also available.
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An ASIC is designed from the ground up for a specific purpose. Hundreds
of millions of gates are possible, but ASIC design can be brutally expensive.
Such Non-Recurring Engineering (NRE) can cost a million dollars in extreme
cases. Still, if you are aiming for best performance in a huge market, after
prototyping with FPGA and/or CPLD, it may make sense to bite the ASIC
bullet.

All of this sounds intimidating, but it is only logic. The HDLs declare
signals and usually operate one bit at a time. There are many tutorials at
various levels, and examples of working code, so that self-teaching is perfectly
practical. When carrying out such self-teaching, software emulators are your
friend, and FPGAs are probably a good place to start.

Most of the HDLs are digital, but Verilog and VHDL offer variants for
analog and mixed signal design.

6.3.2.3 Physics: circuit elements, sensors, and motors

Moving toward the physics, you finally exit the world of logic. Almost everything,
except for a counter on the stimulus side or a stepper motor on the actuator
side, is now many-valued or even smooth-valued. Differential equations and
even, in some cases, quantum mechanics pose laws with which you must comply.
But that is more of an opportunity than a problem, because you will discover
that physics makes sense and tends toward negative feedback and stable
behavior. It is possible to gain a “feel” for a physical response, in contrast to
digital programming, which is based on tests and branches and has no bias at
all toward continuity.

Electrical circuit elements are part of the physics, even though they are
soldered onto your board. Linear components (resistors, capacitors, inductors)
are subject to the familiar impedance equations, and operational amplifiers
(op amps) are usually treated as part of linear design. Non-linear components
like transistors are prominent in power and decision circuitry.

It is worth remembering that for values staying within a certain range,
non-linear components can behave as if they were linear with a bias (an
additive constant in the equation). The same component can have two or more
inconsistent linear ranges, with non-linear behavior between. Linear circuit
elements follow a fixed linear equation only at a constant frequency. As the
frequency is varied, the behavior is usually rational (quotient of polynomials)
in the frequency, and can therefore show such peculiarities as resonance.

Sensors can be made sensitive, or otherwise, by careful biasing so that the
data moves within the analog pickup range of the ADC. It’s worth taking the
trouble to design circuitry that protects them from out-of-range inputs, and to
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characterize them very carefully for nonlinear response and for environmental
dependency (e.g. temperature dependency). There is always a delay involved,
and a counter (Geiger or otherwise) must be given time and mechanism to
reset before the next stimulus. Metastability is a threat in the counter case: a
staff, balanced on its tip, may take longer to decide which way to topple than
you were willing to wait. Devices like a Schmitt trigger, plus some delay, make
the likelihood of this vanishingly small.

On the actuator side, LEDs and vibrators and motors require power, and
always have a nonlinear response at some point, both high-powered (usually
negative or tapering off) and low-powered (often no response due to “stiction,”
a cause of much distress). As with the sensors, circuit protection is needed to
keep outputs within the desired range. Motor delays are likely to be massive,
even millions of clock cycles, due to large-scale inertia. Naive attempts to
speed up response will cause oscillation, which may even resonate and lead
to physical destruction. The mathematics at this end can be very challenging
indeed, and must be solved for all operational cases. A
simple example is the alt-azimuth tracker I described, for which a naive design
will lead to dysfunction at the North Pole, in a manner related to gimbal lock.

There are many actuators to choose from, with tradeoffs including size,
responsiveness, energy efficiency, and robustness. Things get even more in-
teresting when the actuation is compound, as with a tracker or 3D printer.
Then one actuator can cause “whiplash” with the components of the other. If
you think the heyday of science and invention has passed us by, try searching
any challenging problem that interests you. You are likely to find all sorts of
shortcomings in current solutions, and even major directions that have not
been tried.

6.3.2.4 Summary

When embedded programming makes its linkup with the outside world, a great
variety of mathematics comes into its own. Of course, I enjoy this personally,
being a mathematician; but I do have reason. There is beauty in analog
mathematics, plus a kind of resilient toughness that springs from the continuity
and limitations that are built into nature.

Flat, extensive design is the friend of natural mathematics and the friend of
coherent thought and of literacy. Wide Computing acts as a bridge, reuniting
Computer Science with the behavior of all the other sciences, and computer
engineering with all the other kinds of engineering. Everything falls into place
without all the discontinuity and exceptions that currently drive people crazy.
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When the connection to the physical world is done well, the embedded
design rises to the level of art. (That language is well known in the world of
inventions, and patents always refer to “prior art.”) The reason is that only
here does “the stream of ones and zeroes” truly meet “everything else.” And the
way everything else works is much more natural and various than the structure
of bit-streams. That fact is obscured because we tend to accept interfaces like
screen displays and sound as being part of the world of computing, when in fact
they are uses of art, dependent on brain and psychology to narrowly simulate
the breadth of nature.

The embedded programmer triumphantly reaches beyond this narrowness,
which is already causing a kind of revulsion, leading to things like “steam punk”
and the analog revival referenced in [8]. Digital images of wood don’t really
have grain. If computing becomes the servant instead of the master, then a
right relationship is recovered between the willfulness of our programming and
the huge, calm and beautiful world around us.
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Acronyms and Abbreviations

ACK acknowledge
AD9650 a 16-bit ADC by Analog Devices
ADC Analog to Digital Converter
ARM Acorn RISC Machine, a RISC instruction set architecture
ARM1176JZF-S ARM chip in Raspberry Pi
ASIC Application-Specific Integrated Circuit

BATCH a script file used by DOS and Windows
BSD Berkeley Software Distribution, a Unix-like OS

CC1101 a radio transceiver by Texas Instruments
CCD Charge-Coupled Device, an image pixel sensor
CDMA Code Division Multiple Access, a frequency band-sharing method
CISC Complex Instruction Set Computer
Code Composer an IDE by Texas Instruments
comms communications
connel connector link
CPLD Complex Programmable Logic Device
CPU Central Processing Unit
CS Computer Science
CSP Communicating Sequential Processes
CubeSat Cube Satellite, a standardized miniature satellite

DAC Digital to Analog Converter
DARPA Defense Advanced Research Projects Agency
DMA Direct Memory Access
DOS Disk Operating System
DS Data Segment, an X86 segment register

FIFO First-In First-Out
FPGA Field-Programmable Gate Array
FTP File Transfer Protocol

GAL Generic Array Logic
GPGPU General-Purpose Graphics Processing Unit computing
GPIO General-Purpose Input-Output
GUI Graphical User Interface
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Acronyms and Abbreviations

HDL Hardware Description Language
HP Hewlett-Packard Company
HTTPD Hyper-Text Transfer Protocol Daemon

I2C I-squared C, a bus standard
ICE In-Circuit Emulator
IDE Integrated Development Environment
IF Intermediate Frequency
ISR Interrupt Service Routine
ITOCA In-Time On-Chip Army, a patent-pending invention by the author

JTAG Joint Test Action Group, a debugging port standard

Kicksat a Kickstarter satellite project of Zac Manchester

LAN Local Area Network
LAZM Lost Art of Zero Maintenance, a DBA trademark of the author
LC ladder a ladder circuit using inductance and capacitance
LED Light-Emitting Diode
LIFO Last-In First-Out (also called a stack)
LVDS Low-Voltage Differential Signaling

MAC address Media Access Control address, normally world-unique
MC Master Control
MMU Memory Management Unit
MSK Minimum Shift Keying, a radio standard
MSP430 a microcontroller family by Texas Instruments
MSP430F5137 an MSP430 specialized for radio
MSP430F5418 a variety of MSP430

Nooelec DVB a radio receiver dongle by NooElec
NRE Non-Recurring Engineering
NUMA Non-Uniform Memory Access

op amp operational amplifier
OS Operating System
OSC Open Sound Control, an audio protocol

PAL Programmable Array Logic
PIC Peripheral Interface Controller, a microcontroller family by Microchip

Technology
PWM Pulse-Width Modulation
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Acronyms and Abbreviations

R820T a variety of RTL2832U used by Nooelec DVB
RAM Randomly Addressable Memory
RDTSC a cycle counting assembly instruction
REQ Request (handshake)
RISC Reduced Instruction Set Computer
ROI Rate of Improvement
RPi Raspberry Pi
RS232 a serial IO standard
RTL2832U a radio demodulator by Realtek
RTOS Real-Time Operating System

SATA Serial ATA, a bus standard
SCS Super-Computing Surfaces, a computing development partnership
SLCE Sidelnikov, Lempel, Cohn, Eastman CDMA algorithm
SMM System Management Mode, of Intel X86 chips
SOCKLOCAL Linux socket or Windows named pipe
SPI Serial Peripheral Interface
SS Sensor Station

TCM Tightly Coupled Memory, an ARM memory prioritization system
TCP/IP Transmission Control Protocol/Internet Protocol
TDS Transputer Development System
TI Texas Instruments
TSR Terminate and Stay Resident

UART Universal Asynchronous Receiver-Transmitter, a serial protocol
UI User Interface
UPS Uninterruptible Power Supply
USB Universal Serial Bus

VHDL VHSIC Hardware Description Language, a popular HDL

WORLDCOMP an annual computer science multiconference

XCB X-protocol C-language Binding, a free graphics layer library
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-fno-strict-aliasing, 106
--fet-force-id, 104
3DB point, 239

abstraction, ix
accelerometer, 272, 273
accept, 33, 58, 67, 193, 204
access, 11
ACK, 19, 28, 116, 121
acknowledge, 19, 121
actuation, 236, 253, 276
actuator, 238, 239, 251
AD9650, 43
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admittance, 241
algorithmic code, 14, 15, 19–21

addition, 21–22
black boxes, 21
plums, 14

analog data, 236, 238, 275
analog revival, 254, 277
Android, 261
apnotes, 103
app, 8, 237
Appiah, Kwame, ix
arbitrated bus, 271
architecture, 264
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indirect addressing, 264
Princeton, 264

Arduino, 23, 35, 96, 188, 245, 255,
262, 264, 273

ARM, 264, 266
ARM1176JZF-S, 45
Armstrong, John, 41, 42

ASIC, 245, 275
asymptote, 239
Atmel, 264
autobaud, 270
averaging, 238

filters, 239–244

ball grid, 267
bandwidth, 28
baseband, 42, 154
bash, x
BATCH, x
baud rate, 28, 246, 270
bias, 275
big-endian, 106, 245
bit-slice processor, 254
block structure, 56
blocking, 4
Bluetooth, 29, 35, 261, 262, 274

low-energy, 36, 121
MAC address, 127
piconet, 121
scatternet, 121

Boeing, 237, 273
breakpointing, 96
broadcast, 29
BSD, x, 98, 261
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compared with occam, 57, 61–
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replicated ALT, 200
timer ALT, 223–224

graphics code, 228
interpreted, 94
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call/return, 10
callbacks, 3–4, 11, 227
capacitor, 241
cause and consequence, 236
CC1101, 272
CCD, 259, 262
CDMA, 24, 152–154

satellite receiver, 40–48, 50, 146–
180

detector, 164
gatherer, 161–164
twist, 173

celestial sphere, 259
China, 237
circuits, 243
CISC, 263, 264
click-on-file system, 11
clock, 268
clock cycle, 246, 254, 270
cloud, 7, 11
code

critical, 109, 110, 183–184
regular, 109, 110, 130, 185

Code Composer, 96
code snippet, 12, 13, 224
coherent thought, 276
combinational logic, 245
combinatorial logic, 245
command line, 99

history, 100
Makefile, 100
scripts, 100
tab completion, 100

communication, 14, 28–29
alternation, 30–32
approved list, 261
blocking, 64
channels, 19, 32–34, 57–58
hidden retries, 29
initial state, 29

latency and data rate, 223
out-of-band, 188, 214
overhead, 20
point-to-point, 6
pudding, 14
setup, 101–103
unconditional, 115
zero-copy, 148–150
Flip Driver, 150
Slider Slot, 177
Swap Caddy, 148–150, 152,
169

compilers, 92–94, 103–105
external references, 93
header files, 93
mixed ordering, 107
optimizing, 107

complexity tax, 235
component, xi, 16
component life, 2
computing

concrete-slab, 2
crawl-space, 2, 11

conditional sum adder, 22
configuration decisions, 2
connector link, xi
Connel, xi, 7, 13, 48, 64–71, 183–233,

261
buffered channels, 64
deafen or listen, 65, 197–198,

204–207
defines and enum, 66
enforced synchrony, 64
functions, 64
connector link, 74–76
select-related, 76–81
time, 73–74

machines, 65
macros, 64, 71–73
not dynamic, 71
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structs, 65–71
timer, 212, 223–226

connel_grfx_t, 70
connel_list_t, 67
connel_machine_t, 68
connel_set_t, 69
connel_t, 67
connel_timeout_t, 66, 212
connels, 8, 14, 184

keyboard and screen, 23, 32, 185
named pipe, 23
serial, 8, 23, 33, 185, 245, 270
block comms, 220–223
setup, 101–103, 220
start and stop bits, 245

socket, 8, 23, 261
SOCKLOCAL, 33–34, 188, 191,

200, 207–212, 219
corners, 239
countdown, 268
Cowan, Bill, ix
CPLD, 245, 262, 274
craziness, 253, 276
cross-compiling, 96, 188
crystal, 268
CSP, xii, 6, 12, 19, 23, 133
CubeSat, 41
current divider, 243
cutoff frequency, 239
cutoff period, 241

DAC, 239, 253, 269, 270
DARPA, 8
data flow, 3, 4, 18–19

receiver, 19
timing, 19

debounce, 238
debuggers, 95–96, 103–105, 271

breakpoint, 271
monitoring, 96

post-mortem, 96
watchpoint, 271

delay patterns, 253
demodulation, 41, 45, 154
destination, 18
development territory, 10
development toolsets, 99–105
development viscosity, 8
diagnostics, 96
Dickson, Alice, xii
Dickson, Elizabeth, xii
Dickson, Jeanne, xii
Dickson, Thomas, xii, 8
digital data, 236, 238
disassembled map, 105
dissipative, 252
DMA, 7, 45, 148, 257, 269, 270, 273
DOS, x, 17, 188, 255
driver, 4
driver logic, 274–275
DS, 11
duality, 10, 20–21

deep vs wide, 21
intensive vs extensive, 20
top-down vs bottom-up, 20

dummy, xi, 24, 25, 184
duty cycle, 268
dynamic, 15

efficiency, 6
embedded CPU, 263–273

architecture, 264
floating point unit, 263, 273
memory, 264–266

embedded programming, 28, 48, 64,
95, 99, 104, 121, 224, 235–
277

fully capable OS, 188–191
sample code, 220
sesquitasking OS, 254–258, 267
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wild vs tame, 258
setup/loop, 256
sleep mode, 35, 123, 256, 266–

267
tracker example, 258–262

Energia, 35, 96, 247, 255, 263
energy-conserving, 252
Epiphany 64, 47
Ethernet, 271–272
event, 31
exceptions, 253

failure modes, 253
fan, 36
fan-out, 22, 268
farming, 237
feedback, 45, 253, 259, 275
FIFO, 28, 107, 111–120, 245, 246,

253, 262
circular indexed, 115–117
shelf and store, 116

nesting outermost, 120
rawFIFO, 111–115
shift register, 111

filters, 239–244
transfer function, 240

FIND, 99
fine-grained threads, 23
firmware, 264–266

burning, 94, 265
upgrading, 94

First Wave, 24, 27–50
existing technology, 28
primitivism, 27

first-class functions, 3
flash memory, 264, 265, 271
floating, 267
Flutter, 36
flyover country, 237
folding editor, 63

subsections, 85
force, 238
Ford automotive radar, 245
Fourier analysis, 43
FPGA, 245, 262, 274
fracking, 237
frequency, 275
frequency cutoff, 238
Fryer, Rob, xii, xiii, 40, 160
FTP, 184
functional programming, 15

GAL, 274
garbage collection, 261
gatekeepers, 7
gcc, 106
Gigabit Ethernet, 42
gimbal lock, 276
glitches, 5
global variables, 107
GND, 270
GNURadio, 41
Go, 2
Gold-codes, 41
Google, 103
GPGPU, 2, 15
GPIO pin, 267–268

driver pin, 267
FRIED, 267

graphics events, 23, 34, 226–227
Graphics Slave, xii, 35, 226–233

partial pseudocode, 228–232
utility, 232–233

grep, 99
group delay, 239
GUI, 11, 96, 233, 261

Handel-C, 274
hardware/software equivalence, 6,
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harness, 8, 9
HDL, 274
header files, 98
heat flow, 274
Heaviside “step” function, 240
Hello World, 1
heterodyning, 42
hiding, 16
high-impedance, 267
Hirschsohn, Ian, 255
Hoare, C.A.R., 19
HOWTO files, 24
HP Palmtop, 18
Hunner, Trey, xii
hysteresis, 238, 239

I2C, 262, 269, 271
ICE, 271
IDE, 12, 96–99
IF, 41, 154–159

analog data, 154
impedance, 241, 275
impulse response, 239

critically damped, 240, 243
overdamped, 240
transfer function, 243

In-phase, 41, 152
indentation, 30, 56
inductor, 241
inertia, 276
information passing, 2
initial state, 2
input, 236
Intel 8051, 264
International Space Station, 41
interrupts, 34, 107, 121, 245, 247,

255, 268–270
ISR, 258, 260, 262, 268, 269
ITOCA, xii

Java, 13, 261
jerkiness, 238
jitter, 245
JTAG, 96, 103, 104, 271
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Keizer, Gregg, 235
Kicksat, xiii, 40–48, 96, 237, 247, 256
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